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Introduction

The purpose of this document is to describe the steps for computing the Initial Margins
Expected Shortfall of the portfolio subject to margining.

The securities to which the process described in this document is applied are the following:

1) Italian government bonds;
2) Spanish government bonds;
3) Irish government bonds;

4) Portuguese government bonds;
5) French government bonds;
6) German government bonds;
7) Dutch government bonds;
8) Belgian government bonds;
9) Finnish government bonds;
10) Austrian government bonds;
11) Supranationals bonds

Therefore, corporate bonds and government bonds that are not part of the MTS GC-
EXTRA basket are currently excluded from the application of the Expected Shortfall
computation (the current Initial Margins computation methodology based on SPAN-like
margin intervals therefore remaining in force).

Cash-flow mapping

First, the cash flows of each security belonging to the portfolio subject to margining are
assigned to the proper risk factors. In particular, the current market value of each security is
split onto its cash flows (each having its own duration), which are subsequently mapped
onto the proper tenors of the sovereign zero-coupon (ZC) spot curve which the security refers to
(e.g. Italian ZC curve for Italian government bonds).

Cash-flow mapping is applied to a subset of the Clearing Member’s portfolio composed only
of cash and repo positions, as for forward starting repo positions, as illustrated in the Mark-to-
Market Margins module, the exposure to the bond price movements is both long and short,

thus resulting in a net 0 exposure.
Price scenarios

Then, price variation scenarios, both unscaled and EWMA-scaled, are computed for the ZC curves
tenors impacted. These scenarios will be employed in the revaluation of the margined
portfolio.

In particular, the sealing methodology is based on the introduction of a so-called swoothing
factor (model parameter), through which it is possible to differently weigh observations of the
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time series based on current volatility regime. The scaling process consists of the following

steps:

1) retrieving rafe time series of the tenors of the ZC curves,
2) converting rafe time seties into price time series;

3) computing (unscaled) relative price returns,

4) computing EWN.A volatilities;

5) computing scaled relative price returns,

6) defining unscaled price scenarios,

7) defining scaled price scenarios.

Expected Shortfall

Once the (market value of the) cash flows of the portfolio subject to margining have been
mapped onto the proper ZC curve tenors and the set of scaled and wunscaled price scenarios for
these tenors has been defined, the portfolio must be revalued in each of its aforementioned
cash flows and price scenarios. The comparison between the total value of the revalued
portfolio and its current market value yields the profit/loss in the specific price scenario. Given
the chosen confidence levels (model parameters), the Expected Shortfall of the margined portfolio

can be computed.

The Expected Shortfall can be wundiversified or diversified depending on whether, in case of a
portfolio composed of bonds issued by multiple countries, the benefit of the diversification

between issuers undertaken by the Clearing Member is acknowledged or not.
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2.1.1

Cash-flow mapping

2.1 Coupon stream definition

Preliminary to the cash-flow mapping procedure is the determination of the coupon stream
of each of the securities belonging to the categories listed in the previous paragraph.
Particular procedures must be applied to floating-rate securities (floaters - i.e. Italian CCTexu)
and inflation-linked securities (Znkers - ie. Italian BTP Ifalia and BTP€;, Spanish /linkers,
French /inkers and German /inkers), as described in the following sub-paragraph.

Floaters and linkers
Input data needed

In order to correctly deal with floaters and /linkers (whether European, Italian or French
inflation-linked) the input data needed are:

1) 6M Euribor zero-coupon spot curve at evaluation date;

2) 6M Euribor time series;

3) Zero-coupon spot European inflation curve at evaluation date;
4)  Zero-coupon spot Italian inflation curve at evaluation date;

5) Zero-coupon spot French inflation curve at evaluation date;

6) European ex-tobacco CPI (CPTFEMU) time series;

7) Italian ex-tobacco CPI (FOI) time series;

8) French ex-tobacco CPI (HICP) time series.

Building the 6M Euribor ZC forward curve at evaluation date for CCTeus

CCTens are Italian government bonds whose coupons are indexed to the 6M Euribor. In
otrder to define the coupon stream it is therefore necessary to calculate the future value of
the underlying rate at the various reset dates. The reset date is the day at which the 6M Euribor
employed for defining a given coupon is set. The reset date for the current coupon is defined

as the last coupon date - 2 working days.

To this aim, the 6M Euribor ZC spot curve is essential, the forward rates being implied by the

term structure.

Given a generic term structure, the following relation indeed holds:
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Figure 2-1: Spot and forward rates

om m mm mm o = ———

Assuming you want to invest €1 at O for 2 years there are two different options:

1) directly invest for 2 years at spot rate S2;
2) invest for 1 year at spof rate S1 and then reinvest the amount obtained for 1 year
more at forward rate 1F1, 1.e. the rate applied to financial operations that start in 1 year

and end in 2 years.

Absence of arbitrage condition implies that the two investment options described above

must be equivalent:

(1) (14 82)? = (1+S1) * (1+1F1),

which in turn implies:

) 1F1 = (1482)* / (1 + S1) - 1.

Each specific spot curve therefore implies a corresponding forward curve.

As far as CCTeus are concerned, in order to calculate the future coupon values, thus defining
the coupon stream, it is necessary to start from the 6M Euribor ZC spot curve.

Intermediate, unavailable tenors can be obtained linearly interpolating available ones (e.g.
spot_rate_210 = spot_rate_180 + (spot_rate_270 - spot_rate_180 ) * (210 - 180) / (270 -
180)).

Having the ZC spot curve, it is possible to proceed with the calculation of the respective

discount factors:

Table 1: Discount factors calculation

- e o = e -
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Tenor Rate Discount factor
1/ (1+spot_rate_1*1/
1 spot_rate_1 360)
1/ (1 + spot_rate_7*7/
7 spot_rate_7 360)
1/ (1 + spot_rate_2700 *
2700 spot_rate_2700 2700 / 360)

according to the formula df = with 7 annnal spot rate and T: reference tenor of the spot

1
(1+r*T)°
rate, expressed in year fraction (day count convention: act/360).

Given the calculated discount factors, it is possible to compute the 6M forward discount factors for

each of the curve tenors according to the formula dfg, g « = defGM:
Table 2: Forward discount factors calculation
Tenor Rate Discount factor .6M forward
discount factor
1 spot_rate_1 df 1 df 181 /df 1
spot_rate_7 df 7 df 187 /df 7
df 360 /
180 spot_rate_180 df 180 df._180
df 2700 /
2520 spot_rate_2520 df 2520 df2520

For each of the calculated discount factors the respective 6M forward discount factor must be
computed (with the obvious exception of the discount factor corresponding to the last tenor, as
we will see below). In detail, for each of them, the respective 6M abead discount factor must be
identified: if the latter is not directly available among those already computed, it is necessary
to compute it by linear interpolation. For example, the 6M forward discount factor for the O/ N
(z.e. 1d) rate will be equal to the ratio of the 787d discount factor (starting tenor = 1 day + 6
months) to the 7d discount factor. While the latter is directly available, the former must be
calculated as linear interpolation between the 780d discount factor and the 210d disconnt factor
(df_180 + (df_210 - df_180) * (181 - 180) / (210 - 180)). The 6M forward discount factor for the
7d rate will be equal to the ratio of the 7874 discount factor (starting tenor = 7 days + 6 months)
to the 7d discount factor. As in the previous case, the latter is directly available while the former
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must be calculated as linear interpolation between the discount factors within which it falls
(again, 180 and 210 days). In order to compute the 780d discount factor no linear interpolation
is instead needed, as the two terms of the ratio are both already available (180 and 360 days).
In the above representation, the calculation of the 6M forward discount factors ends up at tenor
2520 (corresponding to 7 years), obtained as the ratio of the 2700d discount factor (7.5 years) to
the 2520d discount factor (7 years).

It is finally possible to proceed with the calculation of the 6M forward rates for each of the

tenors for which the respective 6M forward discount factor has been computed, according to the
1 - dfforward
formula forward,,,, = ———z5 :
t f, * —
forwarde ~ 34,

Table 3: Forward rates calculation

Tenor

Rate

Discount factor

6M forward
discount factor

6M forward
rate

spot_rate_1

df 1

fwd_df_1

(1 — fwd_df 1)
/ (fwd_df 1 *
180/360)

spot_rate_7

df_7

fwd_df 7

(1 — fwd_df_7)
/ (fwd_df 7 *
180/360)

180

spot_rate_180

df_180

fwd_df_180

(1-
fwd_df_180) /
(Fwd_df_180 *

180/360)

2520

spot_rate_2520

df_2520

fwd_df_ 2520

(1-
fwd_df_2520)
/
(Fwd_df_2520
* 180/360)

Once built the 6M forward curve at evaluation date, it is possible to proceed with the definition
of the coupon stream of the CCTexs indexed to 6M Euribor.

Coupon stream definition for CCTeus

In order to define the coupon stream for CCTleus it is necessary to know, in addition to the
Jforward values of the underlying rate, the fixed annual spread applied to them (CCTens indeed
semiannually pay 6M Euribor + spread). The sum of these annual rates and the annual spread
component - multiplied by the number of days between contiguous coupon dates, ze. 6

months - defines the coupons.

Consider the following example:
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e ISIN: IT0005104473;

e Maturity date: 15/12/2019;

e Current coupon rate: 0,14;

e Spread: 0,55%;

e Coupon frequency: 6 months;
e Principal: 100;

e FEvaluation date: 20/04/2018.

Consider the following 6M Euribor forward curve at evaluation date:

Tenor Days 6M Euribor forward rate
O/N 1 -0,00324
1w 7 -0,00318
1M 30 -0,00293
2M 60 -0,00267
3M 90 -0,00238
oM 180 -0,00258
™ 210 -0,00243
8M 240 -0,00229
IM 270 -0,00236
1YR 360 -0,00186
1,5YR 540 0,00183
2YR 720 0,00372

The first step is the determination of the future coupon dates:

Coupon date
15/06/2018
15/12/2018
15/06/2019
15/12/2019

Subsequently, it is necessary to determine the reset date of each future coupon date (payment)
and compute the relative #me to payment, i.e. the number of days between evaluation date (in
the example, 20/04/2018) and each reset date:

Coupon date Reset date Time to payment (days)
15/06/2018 13/12/2017 past
15/12/2018 13/06/2018 54
15/06/2019 13/12/2018 237
15/12/2019 13/06/2019 419
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For each #me to payment, as shown in the table below, the corresponding 6M Euribor forward
rate is identified (linearly interpolated or directly available looking at the curve in case the e
to payment coincides with one of its tenors).

Coupon date Reset date Time to payment | 6M Euribor forward
(days) rate
15/06/2018 13/12/2017 past unnecessary’'
15/12/2018 13/06/2018 54 -0,002722
15/06/2019 13/12/2018 237 -0,002304
15/12/2019 13/06/2019 419 0,0006505

It is finally possible to proceed with the calculation of each coupon employing the following
formula:

coupon_date-last_coupon_date

(4) coupon = max(0;(forward_rate+spread) * principal * 360

The 15/12/2018 coupon payment will thus be:

15_12_2018-15_06_2018
(:0,002722+0,0055) * 100 * ——————— =0,14;

and so on for the other coupon dates (rounding: 2 decimal places).

At maturity, the payment will be equal to what obtained employing formula (4) plus the
repayment of the principal of the bond. The coupon stream of the CCTex of the example
can therefore be summarized as in the following table:

Coupon date Coupon Notes
15/06/2018 0,14 known, coupon
15/12/2018 0,14 coupon
15/06/2019 0,16 coupon
15/12/2019 100,31 coupon

principal

Building the CPI curves for linkers

In order to define the coupon stream for /Znkers, it is necessary to leverage on the relevant

ZC spot inflation curves to lengthen the time series of the relevant CPIs with their forward
values.

1'The 15/06/2018 coupon is already defined and known.

10
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First, we need to differentiate between the types of /nkers which may be subject to
margining:

e BTP Italia — Italian government bonds linked to [Zalian ex-tobacco inflation (FOI);

e BTP€i — Italian government bonds linked to Exrgpean ex-tobacco inflation (CPTFEMU);
e Spanish government bonds linked to Ewuropean ex-tobacco inflation (CPTFEMU);

e French government bonds linked to French ex-tobacco inflation (HICP);

e French government bonds linked to Ewurgpean ex-tobacco inflation (CPTFEMU);

e German government bonds linked to Eurgpean ex-tobacco inflation (CPTFEMU).

Depending on the type of security subject to margining, it is therefore necessary to proceed
with the calculation of different forward CPI values (FOI, CPTFEMU or HICP), depending on
whether the security is indexed to [talian, French or European ex-tobacco inflation. The first step
is, as anticipated, the retrieval of the relevant ZC spot inflation curve.

Before proceeding with the calculation of the forward CPI values it is also necessary to retrieve
the CPI time series. Both CPIs are updated on a monthly basis (usually at mid-month) and
with a time lag of 1 month (e.g. at mid-April the March CPI value is published). The
aforementioned time series will thus have monthly observations and can be represented as
follows:

Table 4: FOI time series

Date FOI CPI
31-03-2018 FOI_cpi_0318
28-02-2018 FOI_cpi_0218
31-01-2018 FOI_cpi_0118
31-12-2017 FOI_cpi_1217

Table 5: CPTFEMU time series

Date CPTFEMU CPI
31-03-2018 CPTFEMU_cpi_0318
28-02-2018 CPTFEMU_cpi_0218
31-01-2018 CPTFEMU_cpi_0118
31-12-2017 CPTFEMU_cpi_1217

Once the time series are available, it is necessary to identify the base value which will be
employed in the calculation of the forward CPI values. The base value is the 3 months-earlier
CPI value (3 months-time lag) at evaluation date (e.g. if the evaluation date is 04/05/2018
the base value will be the 28/02/2018 (February) CPI value).

11
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The forward CPI values can then be calculated as follows:

Table 6: Forward CPI - FOI

Tenor (years) Z.C spot inflation rate Forward CPI
1 FOL_ZC_lyr_rate (1 + FOI_ZC_1yr_rate) * 1
- == * base value
) FOT_ZC_2yr_rate (1 + FOI_ZC_2yr_rate) ™ 2
- == * base value
3 FOL ZC 3vr rate (1 + FOI_ZC_3yr_rate) 3
— IV * base value
4 FOL ZC 4vr rate (1 + FOI_ZC_4yr_rate) " 4
— oY * base value
5 FOI 7C Svr rate (1 + FOI_ZC_5yr_rate) ~ 5
— IV * base value
6 FOI 7C 6vr rate (1 + FOI_ZC_6yr_rate) ™ 6
— OV * base value
- FOI_ZC_Tyr_tate (1 + FOI_ZC_7yr_rate) ~ 7
- == * base value
g FOI 7C Svr rate (1 + FOI_ZC_8yr_rate) ~ 8
— OV * base value
9 FOL ZC 9vr rate (1 + FOI_ZC_9yr_rate) ~ 9
— oIV * base value
(1 + FOI_ZC_10yr_rate) ©
10 FOI_ZC_10yr_rate 10 * base vl
(1 + FOI_ZC_12yr_rate) ©
12 FOI_ZC_12yr_rate 12 pase value
(1 + FOI_ZC_15yr_rate) ©
15 FOI_ZC_15yr_rate 15% pase value
(1 + FOI_ZC_20yr_rate) ©
20 FOI_ZC_20yr_rate 20 % base vl
(1 + FOI_ZC_25yr_rate) ©
25 FOI_ZC_25yr_rate 25F hase value
(1 + FOI_ZC_30yr_rate) ©
30 FOI_ZC_30yr_rate 30 % base vale

Table 7: Forward CPI - CPTFEMU

Tenor (years)

Z.C spot inflation rate

Forward CPI

1

CPTFEMU_ZC_lyr_rate

(1 + CPTFEMU
_ZC_lyr_rate) ™ 1 °* base

value

CPTFEMU _ZC_2yr_rate

(1 + CPTFEMU
_ZC_2yr_rate) ™ 2* base

value

CPTFEMU _ZC_3yr_rate

(1 + CPTFEMU
_ZC_3yr_rate) "~ 3 * base

12
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valie

CPTFEMU _ZC_4yr_rate

(1 + CPTFEMU
_ZC_4yr_rate) ™ 4 * base

valie

CPTFEMU _ZC_5yr_rate

(1 + CPTFEMU
_ZC_5yr_rate) ™ 5 * base
value

CPTFEMU _ZC_06yr_rate

(1 + CPTFEMU
_ZC_06yr_rate) ™ 6 * base
value

CPTFEMU _ZC_7yr_rate

(1 + CPTFEMU
_ZC_Tyr_rate) ™ 7 * base
value

CPTFEMU _ZC_8yr_rate

(1 + CPTFEMU
_ZC_8yr_rate) ™ 8 * base
value

CPTFEMU _ZC_9yr_rate

(1 + CPTFEMU
_ZC_9yr_rate) ~ 9 * base
value

10

CPTFEMU _ZC_10yr_rate

(1 + CPTFEMU
_ZC_10yr_rate) ~ 10 * base
value

12

CPTFEMU _ZC_12yr_rate

(1 + CPTFEMU
_ZC_12yr_rate) ~ 12°* base

value

15

CPTFEMU _ZC_15yr_rate

(1 + CPTFEMU
_ZC_15yr_rate) ™~ 15 * base

value

20

CPTFEMU _ZC_20yr_rate

(1 + CPTFEMU
_ZC_20yr_rate) ™ 20 * base

value

25

CPTFEMU _ZC_25yr_rate

(1 + CPTFEMU
_ZC_25yr_rate) ™ 25* base
value

30

CPTFEMU _ZC_30yr_rate

(1 + CPTFEMU
_ZC_30yr_rate) ™ 30 * base
value

It is then possible to lengthen the observed CPI time series with the computed forward CPI

values to have a complete (observed and forward) time series of CPI values, through which it

is possible to define the coupon stream for the /Znkers. The two complete time series can be

represented as follows (assuming as base value that of March 2018):

Table 8: FOI complete time series

‘ Date

FOI CPI

13
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31-03-2048 forward_FOI_cpi_30yr
31-03-2027 forward_FOI_cpi_9yr
31-03-2026 forward_FOI_cpi_8yr
31-03-2025 forward_FOI_cpi_7yr
31-03-2024 forward_FOI_cpi_06yr
31-03-2023 forward_FOI_cpi_5yr
31-03-2022 forward_FOI_cpi_4yr
31-03-2021 forward_FOI_cpi_3yr
31-03-2020 forward_FOI_cpi_2yr
31-03-2019 forward_FOI_cpi_1Yr
31-03-2018 FOI_cpi_0318
28-02-2018 FOI_cpi_0218
31-01-2018 FOI_cpi_0118
31-12-2017 FOI_cpi_1217

Table 9: CPTFEMU complete time series

Date CPTFEMU CPI
31-03-2048 forward_ CPTFEMU_cpi_30yr
31-03-2027 forward_ CPTFEMU_cpi_9yr
31-03-2026 forward_ CPTFEMU_cpi_8yr
31-03-2025 forward_CPTFEMU_cpi_7yr
31-03-2024 forward_ CPTFEMU_cpi_6yr
31-03-2023 forward_ CPTFEMU_cpi_5yr
31-03-2022 forward_CPTFEMU_cpi_4yr
31-03-2021 forward_ CPTFEMU_cpi_3yr
31-03-2020 forward_ CPTFEMU_cpi_2yr
31-03-2019 forward_CPTFEMU_cpi_1Yr
31-03-2018 CPTFEMU_cpi_0318
28-02-2018 CPTFEMU_cpi_0218
31-01-2018 CPTFEMU_cpi_0118
31-12-2017

CPTFEMU_cpi_1217

Coupon stream definition for linkers

which in turn is a function of the trend of the reference CPI over time.

In order to define the coupon stream, the following information are therefore essential:

Both coupons and principal of /nkers are revalued on the basis of an zndexation coefficient,

14
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issue date;

maturity date;

real annual coupon rate;
coupon frequency;

principal;

complete time series of the reference CPI (FOI, CPTFEMU or HICP).

For example, consider the following BTP€i at evaluation date: 20/04/2018:

and the following complete time series of the reference

issue date: 23/04/2014;

maturity date: 23/04/2020;

real annual coupon rate: 0,825%;
coupon frequency: 6 months;

principal: 100;

described above:

CPTFEMU CPI, obtained as

15
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Date Mid Price
31/03/2048 172,13
31/03/2043 156,61
31/03/2038 141,95
31/03/2033 128,12
31/03/2030 121,10
31/03/2028 116,84
31/03/2027 114,80
31/03/2026 112,92
31/03/2025 111,10
31/03/2024 109,36
31/03/2023 107,72
31/03/2022 106,28
31/03/2021 104,98
31/03/2020 103,77
31/03/2019 102,54
31/03/2018 101,70
28/02/2018 101,50
31/01/2018 101,50
31/12/2017 101,10
30/11/2017 100,80
31/10/2017 100,90
30/09/2017 101,10
31/08/2017 101,40
31/07/2017 101,00
30/06/2017 101,00
31/05/2017 101,10
30/04/2017 101,30
31/03/2017 101,00
28/02/2017 101,00
31/01/2017 100,60
31/12/2016 100,30
30/11/2016 100,00
31/10/2016 100,00
30/09/2016 100,00
31/08/2016 100,20
31/07/2016 100,00
30/06/2016 99,90
31/05/2016 99,70
30/04/2016 99,60
31/03/2016 99,60
29/02/2016 99,50
31/01/2016 99,70
31/12/2015 99,91
30/11/2015 99,91
31/10/2015 100,09
30/09/2015 99,91
31/08/2015 100,28
31/07/2015 100,09
30/06/2015 100,19
31/05/2015 100,09
30/04/2015 100,00
31/03/2015 99,91
28/02/2015 99,72
31/01/2015 99,44
31/12/2014 99,91
30/11/2014 99,91
31/10/2014 100,09
30/09/2014 100,00
31/08/2014 100,37
31/07/2014 100,19
30/06/2014 100,28
31/05/2014 100,19
30/04/2014 100,28
31/03/2014 100,09
28/02/2014 100,09
31/01/2014 100,19

31/12/2013 100,00
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The first step in the definition of the coupon stream for /Jnkers is to list the coupon dates

(starting from issue date, including also past coupon dates):

Coupon date

23/04/2014

23/10/2014

23/04/2015

23/10/2015

23/04/2016

23/10/2016

23/04/2017

23/10/2017

23/04/2018

23/10/2018

23/04/2019

23/10/2019

23/04/2020

It is then necessary for each of the above dates to identify the relative 2 months-earlier and 3

months-earlier dates, transformed into month-ends:

Coupon date

Coupon date — 2 months

Coupon date — 3 months

23/04/2014 28/02/2014 31/01/2014
23/10/2014 31/08/2014 31/07/2014
23/04/2015 28/02/2015 31/01/2015
23/10/2015 31/08/2015 31/07/2015
23/04/2016 29/02/2016 31/01/2016
23/10/2016 31/08/2016 31/07/2016
23/04/2017 28/02/2017 31/01/2017
23/10/2017 31/08/2017 31/07/2017
23/04/2018 28/02/2018 31/01/2018
23/10/2018 31/08/2018 31/07/2018
23/04/2019 28/02/2019 31/01/2019
23/10/2019 31/08/2019 31/07/2019
23/04/2020 29/02/2020 31/01/2020

For each of the dates identified in the last two columns of the above table, the respective

reference CPI value must be obtained from its complete time series, linearly interpolating

where necessary:

Coupon date —2

Coupon date — 3

Coupon date CPI m-2 CPI m-3
months months

23/04/2014 28/02/2014 31/01/2014 100,0934 100,1867

23/10/2014 31/08/2014 31/07/2014 100,3735 100,1867

23/04/2015 28/02/2015 31/01/2015 99,7199 99,4398

17
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23/10/2015 31/08/2015 31/07/2015 100,2801 100,0934
23/04/2016 29/02/2016 31/01/2016 99,5000 99,7000
23/10/2016 31/08/2016 31/07/2016 100,2000 100,0000
23/04/2017 28/02/2017 31/01/2017 101,0000 100,6000
23/10/2017 31/08/2017 31/07/2017 101,4000 101,0000
23/04/2018 28/02/2018 31/01/2018 101,5000 101,5000
23/10/2018 31/08/2018 31/07/2018 102,0512 101,9800
23/04/2019 28/02/2019 31/01/2019 102,4667 102,4024
23/10/2019 31/08/2019 31/07/2019 103,0520 102,9478
23/04/2020 29/02/2020 31/01/2020 103,6637 103,5662

For each of the rows of the above table an index number is computed according to the

following formula:

(5) index_number = CPL_ ; + ‘1—; * (CPL,,_, - CPL, ),

with & coupon date for which the zundex number is computed and dd- number of days in the

month which the coupon date belongs to (rounding: 5 decimal places):

Coupon
Coupon Coupon date datep— 3 CPI m-2 CPI m-3 Index

date — 2 months number

months
23/04/2014 28/02/2014 31/01/2014 100,0934 100,1867 100,1183
23/10/2014 31/08/2014 31/07/2014 100,3735 100,1867 100,3193
23/04/2015 28/02/2015 31/01/2015 99,7199 99,4398 99,6452
23/10/2015 31/08/2015 31/07/2015 100,2801 100,0934 100,2259
23/04/2016 29/02/2016 31/01/2016 99,5000 99,7000 99,5533
23/10/2016 31/08/2016 31/07/2016 100,2000 100,0000 100,1419
23/04/2017 28/02/2017 31/01/2017 101,0000 100,6000 100,8933
23/10/2017 31/08/2017 31/07/2017 101,4000 101,0000 101,2839
23/04/2018 28/02/2018 31/01/2018 101,5000 101,5000 101,5000
23/10/2018 31/08/2018 31/07/2018 102,0512 101,9800 102,0305
23/04/2019 28/02/2019 31/01/2019 102,4667 102,4024 102,4495
23/10/2019 31/08/2019 31/07/2019 103,0520 102,9478 103,0218
23/04/2020 29/02/2020 31/01/2020 103,6637 103,5662 103,6377

Once an zndex number for each coupon date has been computed it is possible to calculate the
relative zndexation coefficient (IC), bearing in mind that the IC at issue date is equal to 1 and that
the following ICs are equal to:

index_number,

1C, = tor BTP Italia and French government bonds linked to French

max(index_number_;; ...; index_number)

exc-tobacco inflation,
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that is the ratio of the zndex number relative to the coupon date for which the IC is computed

and the maximum among the previous zudex numbers (rounding: 5 decimal places), and

index_number, .
————— for other /nkers,
index_number

IC, =

that is the ratio of the zndex number relative to the coupon date for which the IC is computed

and the issue date zndex numbers (rounding: 5 decimal places).

In the example below an example of computation of ICs for a BTP Ifalia is shown:

Coupon Index IC
date number
23/04/2014 100,1183 1,0000
23/10/2014 100,3193 1,0020
23/04/2015 99,6452 0,9933
23/10/2015 100,2259 0,9991
23/04/2016 99,5533 0,9924
23/10/2016 100,1419 0,9982
23/04/2017 100,8933 1,0057
23/10/2017 101,2839 1,0039
23/04/2018 101,5000 1,0021
23/10/2018 102,0305 1,0052
23/04/2019 102,4495 1,0041
23/10/2019 103,0218 1,0056
23/04/2020 103,6377 1,0060

Since BTP ltalias guarantee real coupons, in case of deflation (IC < 1) a floor equal to 1 is
applied to the ICs. The adjusted ICs can therefore be defined as max (I1C; 1):

Coupon Index IC Adjusted IC
date number
23/04/2014 | 100,1183 1,0000 1,0000
23/10/2014 | 100,3193 1,0020 1,0020
23/04/2015 99,6452 0,9933 1,0000
23/10/2015 | 100,2259 0,9991 1,0000
23/04/2016 99,5533 0,9924 1,0000
23/10/2016 | 100,1419 0,0982 1,0000
23/04/2017 | 100,8933 1,0057 1,0057
23/10/2017 | 101,2839 1,0039 1,0039
23/04/2018 | 101,5000 1,0021 1,0021
23/10/2018 | 102,0305 1,0052 1,0052
23/04/2019 | 1024495 1,0041 1,0041
23/10/2019 | 1030218 1,0056 1,0056
23/04/2020 | 103,6377 1,0060 1,0060
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In case of other /nkers it is only the last IC to be floored at 1.

It is then possible to compute each coupon the following way:

real_annual_coupon_rate

Coupont - coupon_frequency * p r1nc1pa1 * IcadiuSth_t :
Coupon Index IC Adjusted IC |  Coupon
date number

23/04/2014 100,1183 1,0000 1,0000 2

23/10/2014 100,3193 1,0020 1,0020 0,4133
23/04/2015 99,6452 0,9933 1,0000 0,4125
23/10/2015 100,2259 0,9991 1,0000 0,4125
23/04/2016 99,5533 0,9924 1,0000 0,4125
23/10/2016 100,1419 0,9982 1,0000 0,4125
23/04/2017 100,8933 1,0057 1,0057 0,4149
23/10/2017 101,2839 1,0039 1,0039 0,4141
23/04/2018 101,5000 1,0021 1,0021 0,4134
23/10/2018 102,0305 1,0052 1,0052 0,4147
23/04/2019 102,4495 1,0041 1,0041 0,4142
23/10/2019 103,0218 1,0056 1,0056 0,4148
23/04/2020 103,6377 1,0060 1,0060 0,4150

The revaluation of the principal amount is again differently treated:

BTP Italia and French government bonds linked to French ex-tobacco inflation:

The principal revaluation must be computed for each coupon date the following way:
principal_revaluatio1'1t = principal * max(IC, - 1;0).

At maturity the principal reimbursement must be added to the final total payment.
Other /inkers:

The revaluation of the principal amount is paid only at maturity. Therefore, before maturity
the principal revaluation will be:

principal_revaluation __.. =0,

while at maturity the principal revaluation will depend on the ratio between the last (Z.e. at
maturity date) and the first (z.e. at issue date) index numbers:

incial luati incipal * (index_numberT l)
rincipal_revaluation — principa max(—————; .
p p - =T p p index_number,, ’

2 Issue date
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The principal revaluation computed this way must be added to the previously computed
coupon to get the final payment (rounding: 2 decimal places).

The example below again refers to a BTP [falia:

Coupon IC Adjusted IC | Coupon Principal | ent
date revaluation

23/04/2014 1,0000 1,0000 - - -
23/10/2014 1,0020 1,0020 0,4133 0,2008 0,61
23/04/2015 0,9933 1,0000 0,4125 0,0000 0,41
23/10/2015 0,9991 1,0000 0,4125 0,0000 0,41
23/04/2016 0,9924 1,0000 0,4125 0,0000 0,41
23/10/2016 0,0982 1,0000 0,4125 0,0000 0,41
23/04/2017 1,0057 1,0057 0,4149 0,5722 0,99
23/10/2017 1,0039 1,0039 0,4141 0,3871 0,80
23/04/2018 1,0021 1,0021 0,4134 0,2134 0,63
23/10/2018 1,0052 1,0052 0,4147 0,5227 0,94
23/04/2019 1,0041 1,0041 0,4142 0,4107 0,82
23/10/2019 1,0056 1,0056 0,4148 0,5586 0,97
23/04/2020 1,0060 1,0060 0,4150 0,5978 101,01

Once the complete stream of payments has been computed, obviously only future payments
are considered for cash-flow mapping purposes. The final table of future payments will thus be
as follows (evaluation date: 20/04/2018):

Coupon IC Adjusted IC |  Coupon Principal 1 p @ ent
date revaluation
23/04/2018 1,0021 1,0021 0,4134 0,2134 0,63
23/10/2018 1,0052 1,0052 0,4147 0,5227 0,94
23/04/2019 1,0041 1,0041 0,4142 0,4107 0,82
23/10/2019 1,0056 1,0056 0,4148 0,5586 0,97
23/04/2020 | 1,0060 1,0060 0,4150 0,5978 101,01

2.1.2 Bullet bonds
Bullet bonds (bullets) are the simplest category among those described in this paragraph: it is
indeed sufficient to define the sequence of the future coupon dates and compute each
coupon as:

.. annual_coupon_rate
=  00ua’_coupon rate
(7) coupon, = principal_amount conpon_frequency
For example, a bullet with a principal amount of 100 is assumed to pay semiannually a 5%
annual rate every 30" of September and 31* of March until maturity (30" September 2020).

If the evaluation date is 20/04/2018:

‘ Date | Payment |
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30/09/2018 2,5
31/03/2019 2,5
30/09/2019 2,5
31/03/2020 2,5
30/09/2020 102,5

A particular sub-type of bullets are zero-conpon bonds (ZCs), with 0% coupon rate.
2.2 Cash-flow mapping

Once the coupon stream for each of the securities in the portfolio subject to margining has
been defined, cash flows can be mapped to their respective risk factors.

Since cash flows can be potentially infinite, a mapping system is used that allows to reduce
their number and map them to a finite and relatively small set of ZC curve tenors called

"vertices".

For example, assuming to have a single bond with a single cash flow in exactly 8 years and
that 8 years is not a managed vertex of the reference ZC curve, this cash flow will be split into
a pair of cash flows at year 7 and 9, if managed.

7 3 9

The two cash flows that originate from the original cash flow must be split in a way the
current market value and the sign of the original cash flow are preserved.

This kind of mapping procedure, called cash flow mapping, allows to take into account the risk
associated to each future cash flow generated by a bond, discounted at the appropriate rate,
and also the non-perfect correlation between tenors (corresponding rates) of a ZC curve (as
opposed to duration mapping or principal mapping).

In order to make the model manageable, cash flows, actually distributed along a continuum
of maturities, are mapped to 7 tenors of the reference ZC curve. Employed ZC curves are
Italian nominal, Italian real, Spanish nominal, Spanish real, Irish nominal and Portuguese
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2.2.1

nominal, French nominal, French real, German nominal, Dutch nominal, Belgian nominal,

Finnish nominal and Austrian nominal.

Cash flows with a maturity that does not coincide with one of the » maturities of the
reference ZC curve are split on the two contiguous maturities, the one preceding and the one
following the maturity of the cash flow, respecting the following three conditions:

e The market value must be preserved: The market value of the two originated cash
flows must be equal to the market value of the original cash flow.

e The market risk must be preserved. The market risk of the two originated cash
flows must be equal to the market risk of the original cash flow.

e The sign must be preserved: The two originated cash flows must both have the

same sign as the original cash flow.
In order to apply the cash flow mapping procedure it is necessary to:

1) compute the #me to payment (I'TP) of each cash flow of each bond;

2) compute the yield to maturity of the bond which the particular cash flows belong to
and then compute the market value of these cash flows;

3) analyze the ZC curve on which each bond is mapped in terms of volatility of each
tenor and correlation among tenors;

4) calculate the weights used to map each cash flow (market value) on the contiguous
vertices of the reference ZC curve;

5) map each cash flow (market value) on the abovementioned vertices.

Time to payment definition
As previously mentioned, each security in the portfolio subject to margining is split into its
future cash flows. For each of these cash flows it is necessary to identify the relative e to

payment, as follows (act/act day count convention):

n days in period 365 + n days in period 366

(&) TTP = 365 366

Formula (8) allows to take into account leap years, in case cash flows fall within them. In
particular, the accrual periods within non-leap years and within leap years are identified for

each cash flow:

Figure 2-2: TTP definition
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Figure 2-2 exemplifies a situation in which the time interval between 'evaluation date' and
'year 2' (start) constitutes the first term of (8), while the time interval between 'year 2' (start)
and 'next coupon date' constitutes the second term of (8), with # days in period 365 (366):
actual number of days between the two dates. If a cash flow accrues entirely in a non-
leap/leap year the second/first term of (8) is set to 0.

Consider the following example:
Evaluation date: 20/04/2018;

Coupon date: 15/05/2020.

In this case the #me to payment will be:

(31/12/2018 - 20/04/2018) s (15/05/2020 - 31/12/2019)
365 366 ’

TTP =

It is then necessary to identify the issuer of each security in the portfolio subject to
margining, in order to define on what ZC cume the security itself (its cash flows) will be
mapped. We have to bear in mind that countries issuing both nominal and inflation-linked

bonds will have two distinct curves.
For each security it is therefore necessary to build a table of the following type:

Table 10: Portfolio cash flow structure

Portfolio ISIN Issuer TTP Cash flow
X TTOOOXXXXXXX IT TTP_1 bond_1 | Cashflow_1 bond_1
X TTOOOX XXX XXX IT TTP_2 bond 1 | Cashflow 2 bond 1
X ES00000XXXXX ES TTP_1_bond_2 | Cashflow_1_bond_2

Each cash flow must therefore be assigned to the proper ZC curve, in order to map its

amount on the respective contiguous vertices.
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2.2.2 Yield to maturity and market value calculation

To each cash flow must be assigned the yield to maturity of the bond which it belongs to. The
calculation of the yield to maturity of a bond is fundamental as it represents the discount factor
which allows to compute the market value of each of its cash flows (market value which in turn
will be mapped on the ZC curve).

In order to perform this calculation it is necessary to use a fitting algorithm (e.g. Newton)
which, fed by the data, allows to obtain the yie/d fo maturity of all the securities in the portfolio
subject to margining. In particular, given the dirty market price of a security and the schedule
of its cash flows, the relative yield to maturity can be computed according to the formula

below:
C()u?on C()Llé)()n + prlncpal
. - coupon_irequency coupon_irequency
(9) bond_price= (L] (<Rt yy o Subon e ,
(+YTM)! (1+YTM*)

with 7 fime to payment of the given coupon and T: #ime to payment of the cash flow at maturity.
Given the guess value YTM¥* the chosen fitting algorithm will run until the difference
between the theoretical dirty price (re)calculated according to the above formula and the dirsy
market price of the bond is below a predefined tolerance threshold.

Table 10 can then be integrated as follows:

Table 11: Portfolio cash flow structure and yield to maturity

Portfolio ISIN Issuer TTP Cash flow Yield t °
maturity

X TTOOOXXXX XXX IT TTP_1_bond_1 Cashflow_1_bond_1 | Ytm_bond_1

X TTOOOXXXX XXX IT TTP_2_bond_1 Cashflow_2_bond_1 | Ytm_bond_1

X ES00000XXXXX ES TTP_1_bond_2 Cashflow_1_bond_2 | Ytm_bond_2

For each cash flow the relative market value must then be calculated by discounting the cash
flow by the yzeld to maturity of the security it belongs to:

Table 12: Portfolio cash flow market value

TTP Cash flow Yield t o Market value
matutity
TTP_1_bond_1 Cashflow_1_bond_1 | Ytm_bond_1 Cashflow_1_bond_1 / (1 + Ytm_bond_1) * TTP_1_bond_1 * ps
TTP_2_bond_1 Cashflow_2_bond_1 | Ytm_bond_1 | Cashflow_2_bond_1/ (1 + Ytm_bond_1) * TTP_2_bond_1 * ps
TTP_1_bond_2

with ps: position sign (.e. +1 for long ISINs and -1 for short ISINs).

The sum of the market values of all the cash flows belonging to a given security has to be
equal to the market value of the security itself.
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2.2.3 Sovereign zero-coupon spot curve analysis

The time series of all the tenors (rates) of all the ZC curves must have length at least equal to
the Jookback period model parameter + 1:

Table 13: ZC curve tenors time series

Date 3M 30Y
t-n w_t-n % z_t-n %
t-n+1 w_t-nt+1 % z_t-n+1 %

t w_t % z_t%

In case of ‘all available data’ lookback period the time series will obviously be sufficient.
It is necessary to compute the following quantities:

1) wolatility (0) of each tenor of each ZC curve

2) correlation (p) of each pair of contiguous tenors of each ZC curve.

In order to compute the wolatility (0) it is necessary to transform the rate time series into time

series of daily rate absolute variations:

Table 14: ZC curve time series — daily variations

Date 3M 30Y
t-n
t-n+1 (w_t-n+1 - w_t-n) % (z_tn+1-2z_t-n) %

t (w_t-w_t-1) % (z_t-z_t-1) %

It is then possible to compute the (sample) volatility (G) of each tenor according to formula:

(10) o =

with x,.,: average of the observations whose wo/atility is being computed (daily rate absolute

variations).

Correlation (p) must be computed for all the pairs of contiguous tenors (of each ZC curve),

with the exception of the last tenor, since there is no corresponding upper tenor.

For example, consider a ZC curve with the following structure:

3M | oM | 1Y ] 2Y | 3Y | 4Y |
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2.24

Correlation (p) must be computed for the pairs of tenors 3M/6M, 6M/1Y, 1Y/2Y, 2Y/3Y
and 3Y/4Y. The computation of p must be performed according to the following formula:

2 2
n (Xi B Xan) n (yi - yavg)

(1) p =(XiL (XiXavg)(YiYan)/(nD)/\/  — i=1

n-1 >

with x and y: down and up tenors, respectively.

For example, consider the following time series of daily rate absolute variations for the 3-

month and 6-month tenors of a specific ZC curve:

Date 3M 6M
12/04/2018 0,725% 0,725%
13/04/2018 0,543% 0,543%
16/04/2018 0,543% 0,283%
17/04/2018 0,972% 0,972%
18/04/2018 0,445% 0,445%
19/04/2018 0,445% 0,445%
20/04/2018 1,656% 1,656%

The /lookback period in the example is equal to 7. x,,, and Vavg A1€ equal to 0,761% e 0,724%,

an
respectively. According to formulas (10) and (11), the 3 month- and 6 month-tenor volatilities
are equal to 0,436% and 0,468%, respectively. Their correlation is instead equal to 97,88%.

Weight calculation for cash-flow mapping

Once the TTP and the market value of each cash flow of each bond in the portfolio subject to
margining have been computed, it is then possible to map each of these cash flows (their
market values) on the tenors of the reference ZC curves (i.e. the curve of the country issuing the

bond).

For example, consider the following margining portfolio:

Portfolio ISIN Issuer TTP Cash flow market value
X ITOOOXXXXXX1 IT 0,3 100.000
X TTOOOXXXXXX?2 IT 1,2 150.000

and Italian ZC curve structure:

3M HGYE 1Y 2Y
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Expressing the TTP in year fractions, the first cash flow (TTP: 0,3) has to be mapped
between onto the 3 month- (0,25) and 6 month- (0,5) tenors. The second cash flow has
instead to be mapped onto the 1 year- (1) and 2 year- (2) tenors:’

ISIN Issuer TTP Market value Down tenor Up tenor
ITOOOXXXXXX1 IT 0,3 100.000 0,25 0,5
TTO0OXXXXXX2 IT 1,2 150.000 1 2

Once the relevant tenors of the reference ZC curve have been identified, the down and up
weights of each cash flow must be computed: these weights allow to map a certain fraction
of the cash flow on the pair of relevant tenors within which the cash flow falls, in
compliance with the principles outlined at the beginning of this paragraph.

It is therefore necessary to compute the interpolation coefficients ¢, and Pup for each of the

cash flows to map: these are function of the TTP of the cash flow and of the duration of the
down and #p tenots:

TTP - down_tenor

12 ¢, =

up_tenor - down_tenor ;
(13) Q4= (1-0,)

thus obtaining:

TTP Market value Down tenor Up tenor (0] ()
low up
0,3 100.000 0,25 0,5 0,8 0,2
1,2 150.000 1 2 0,8 0,2

The volatilities of the down (6,) and #p (6,4+1) tenors of a cash flow, computed according to
formula (10), are then multiplied by the respective interpolation coefficients (the wvolatility of the

down tenor must be multiplied by the interpolation coefficient assigned to the down tenor @,

the wolatility of the up tenor by the znterpolation coefficient of the up tenor (pup), this way obtaining

o*, and 6* 4, i.e. the wolatilities of the down and up tenors of the cash flow adjusted by the
respective znterpolation coefficient.

By employing 6* instead of ¢ it is possible to prevent the distortions that would arise in case
the volatilities of two contiguous tenors were not regularly one greater than the other (with
consequent abrupt fluctuations in the weights applied to the cash flows involved and hence
fluctuations in the margin requirements not justified by changes in the riskiness of the
portfolio itself).

3 In case a cash flow has a TTP lower (higher) than the shortest (longest) tenor, it has to be entirely mapped on
the latter.
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The use of 6* in the mapping procedure also allows to map the cash flows consistently with

their positioning within the interval represented by the two contiguous vertices.

Let’s indicate with W, and W, the weights of the down and #p tenors, respectively, with

o*, and 64y their adjusted volatilities and with p__
(11).

Since the sum of the two weights must be equal to 1 (in order to respect the principle

| theit correlation, according to formula

according to which the market value of the original cash flow to be mapped must be
preserved), we have that:

Wn-H = 1'Wn .

Furthermore,

*  — 2 %2 2 2
O ine — \/Wnc*n+wn+lc*n+l +2ann+lc*n G*n+lpn,n+1 .

We can therefore compute

2
2 2 2 2 2 2
_(ZG*n G*n+1pn’n+1 - 26*n+1> * \[(Zc*n G*n+lpn,n+1 - 26*n+1) '4(G*n+6*n+1'26*n G*nﬂpn’nﬂ)(c*nﬂ‘ G*int)

*2 4 k2 * ok
2(c*;+o*;-20%, O n+1pn,n+1)

>

: *  — * *
with 6 int™— (pdown Y n+ (Pup CTn+1-

The fundamental theorem of algebra implies that formula (14) yields two solutions: in order
to respect the principle according to which the sigr of the original cash flow to be mapped

must be preserved, it is necessary to choose the value of W which is between 0 and 1.

Based on the above, each cash flow can then be mapped on the down and #p tenors, after
having multiplied its zarket value by the respective weights:

TTP Market vale W, W1 Cash flow down Cash flow up
TTP 1 Marketvalue_cashflow_1 w < Marketvalu*e :Vcashﬂow_l Marketvaluf;cashﬂow_l
TTP 2 Marketvalue_cashflow. 2 v , Marketvalu:_ycashﬂow_Z Marketvalu:_zcashﬂow_Z

To summarize, for each ISIN in the portfolio subject to margining the structure of its future
cash flows is defined. The relative market value is then computed (with positive or negative
sign depending on the nature of the position) and mapped on the contiguous tenors of the
reference ZC curve, according to the value of the statistical quantities characterizing the curve
tenors themselves and to the TTP of the cash flow.
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2.2.5 Market value mapping on sovereign zero-coupon spot cutrve tenors
For each ISIN in the portfolio subject to margining it is then possible to obtain, by adding
up all the market values mapped on a specific ZC curve tenor, a structure like that represented
below:

Table 15: Cash-flow mapping per ISIN

Portfolio ISIN Position Tenor Mapped cash flow (market value)
X ITOOOXXXXXX1 L Tenor_1 Sum_mapped_cashflows_bond_1
X ITOOOXXXXXX1 L Tenor_2 Sum_mapped_cashflows_bond_1

Portfolio ISIN Position Tenor Mapped cash flow (market value)
X ITOOOXXXXXX2 S Tenor_1 Sum_mapped_cashflows_bond_2
X TTOOOXXXXXX2 S Tenor_2 Sum_mapped_cashflows_bond_2

For each sovereign among those subject to cash-flow mapping it is possible to compute the
sum of the market values mapped on each tenor of the relative ZC curve (with netting of
potential long and short values mapped on the same tenor), by adding up all the market values
of the ISINs constituting the specific sovereign sub-portfolio:

Table 16: Cash-flow mapping per ZC curve

Portfolio Issuer Tenor Total mapped cash flows (market value)
X Y Tenor_1 Sum_mapped_cashflows_issuer_Y
X Y Tenor_2 Sum_mapped_cashflows_issuer_Y
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3

Price scenarios

3.1 Scaling of the sovereign zero-coupon spot curve time series

The ZC curves to which the scaling process is applied are all those employed to map the
(market value of the) cash flows of the margined portfolio, i.e. relating to the issuers of the
bonds in it. These are:

e Italian nominal;

e Jtalian real;

e Spanish nominal;
e Spanish real;

e Irish nominal;

e Portuguese nominal;
e French nominal,
e French real;

e German nominal;
e Dutch nominal;

e Belgian nominal;
e Finnish nominal;

e Austrian nominal..
All these curves will be taken starting from mid-2004 for complete availability reasons.

The time series of each tenor of each reference ZC curve will have length equal to the lokback
period (model parameter) plus:

o the scaling window (model parameter) employed in the calculation of the EWAMA
volatilities;

o the holding period (model parameter) employed in the calculation of the relative price

returns.

In case of ‘a/l available data’ lookback period this will obviously be equal to a// available data —
scaling window — holding period.

If we call 7 the lookback period and ¢ the scaling window, the panel data of a given ZC curve
(assuming that the longest tenor has a duration of 30 years) can be generalized as follows:

Table 17: ZC curve panel data

n 3M 6M 1Y e 30Y

1 x_1% y_1% v_1% w_1%
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3.1.1

nt+t+hp-1 | x ntt+thp-1% [ y_n+tt+hp-1% | v_ntt+hp-1% w_n+t+hp-1%

n+t+hp x_n+t+hp % y_n+t+hp % v_n+t+hp % w_n+t+hp %

Conversion of the times series from rates to prices
The above rate time series must be converted into price time series employing the following

formulas:

ZC curve tenors with duration < 1 year:
R

(l) price= (1+rate)d ’

ZC curve tenors with duration >= 1 year:

(2) price= 100%™ |

with rate: rate% / 100 and & duration (in years) of the tenor of the ZC curve whose rate time
series is being converted into price time series.

Table 18: Rates into prices conversion

n 3M 6M 1Y 30Y
1 100 / 100 / 100 * 100 *
A+xD"025 | 1+y.1)"05 exp(-1 *v_1) exp(-30 * w_1)
100 / 1(?0+/ 100 * 100 *
_ N 1 % - *
n+t+hp-1 | (1+ x_An+t+hp y_n-+t+hp-1) A exp(-1 exp(-30
1) ~ 0,25 0.5 v_n+t+hp-1) w_n+t+hp-1)
100 / 1(1)O+/ 100 * 100 *
n+t+hp (1 + x_n+t+hp) ) -igt-i-h ~ exp(-1* exp(-30 *
~0,25 y-A 05 P) v_n+t+hp) w_n+t+hp)

Computation of the (unscaled) relative price returns
Once the price time series of each tenor of each ZC curve has been computed, it is necessary
to compute the (unscaled) relative price return time series as follows:

priceg
pricei_pp

(3) price_return, = —-1.

The time series computed this way has length equal to 70 years + ¢.

For example, consider the following raze time series:
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Date 1Y rate
14/03/2017 -0,149%
15/03/2017 -0,167%
16/03/2017 -0,184%
17/03/2017 -0,174%
20/03/2017 -0,172%
21/03/2017 -0,178%
22/03/2017 -0,176%
23/03/2017 -0,175%
24/03/2017 -0,180%
27/03/2017 -0,178%
28/03/2017 -0,175%
29/03/2017 -0,183%
30/03/2017 -0,176%
31/03/2017 -0,180%
03/04/2017 -0,189%

The above rafe time series is converted into a price time series employing formula (2):

Date 1Y rate 1Y price
14/03/2017 -0,149% 100,150
15/03/2017 -0,167% 100,167
16/03/2017 -0,184% 100,184
17/03/2017 -0,174% 100,174
20/03/2017 -0,172% 100,172
21/03/2017 -0,178% 100,178
22/03/2017 -0,176% 100,176
23/03/2017 -0,175% 100,175
24/03/2017 -0,180% 100,181
27/03/2017 -0,178% 100,178
28/03/2017 -0,175% 100,175
29/03/2017 -0,183% 100,183
30/03/2017 -0,176% 100,176
31/03/2017 -0,180% 100,181
03/04/2017 -0,189% 100,189

Assuming a 5 day-holding period the relative price return time seties can be represented as follows:

Date 1Y rate 1Y price 1Y relative price return
14/03/2017 -0,149% 100,150
15/03/2017 -0,167% 100,167
16/03/2017 -0,184% 100,184
17/03/2017 -0,174% 100,174
20/03/2017 0,172% 100,172
21/03/2017 -0,178% 100,178 0,029%
22/03/2017 -0,176% 100,176 0,009%
23/03/2017 -0,175% 100,175 -0,009%
24/03/2017 -0,180% 100,181 0,007%
27/03/2017 -0,178% 100,178 0,006%
28/03/2017 -0,175% 100,175 -0,004%
29/03/2017 -0,183% 100,183 0,007%
30/03/2017 -0,176% 100,176 0,001%
31/03/2017 -0,180% 100,181 0,000%
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| 03/04/2017 | -0,189% | 100,189 | 0,011%

3.1.3 Computation of the EWMA volatility
Given the relative price return time series computed as described above, it is then necessary to
compute for each observation of the lookback period the corresponding value of the volatility
according to the EIWM.A methodology.

In particular, a seed volatility is computed on the first scaling window t observations of the time series
according to formula (10) of above
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Cash-flow mapping section.

For the following /lookback period n observations of the time series the volatility of each
observation is recursively computed according to the formula:

@ o7 = Aot + (1 —Nr?
\/?\0(2) + (1 —Mr?

JAc? + (1 —Vr?2 = JA(AoZ + (1 —Dr2) + (1 —Vr2,

01

()

with A: smoothing factor (comprised between 0 and 1); 7 relative price return computed according

to formula (3). Formula (4), which is a vatiant of the formula 0; = JAcZ_, + (1 —)r? , ,
allows, as outlined at the beginning of the document, to weigh the observations based on the
current volatility cluster.

For example, consider a 11 day-scaling window, a 8 day-lookback period (evaluation date:

15/04/2017, assuming last available ZC curve data is 14/04/2017) and a smoothing factor A =
0,94. Furthermore, consider the following relative price return time series:

Date Relative price EWMA volatility Notes

return

21/03/2017 0,029%

22/03/2017 0,009% SCALING WINDOW

23/03/2017 -0,009%

24/03/2017 0,007%

27/03/2017 0,006%

28/03/2017 -0,004%

29/03/2017 0,007% * standard deviation of

30/03/2017 0,001% the observations between

31/03/2017 0,000% 21/03/2017 and

03/04/2017 0,011% 04/04/2017

04/04/2017 0,019% 0,010%*

05/04/2017 0,010% 0,010%

06/04/2017 0,024% 0,011%

07/04/2017 0,027% 0,013% TL.OOKBACK PERIOD

10/04/2017 0,005% 0,013%

11/04/2017 -0,014% 0,013%

12/04/2017 -0,021% 0,013% Formula (4) is applied

13/04/2017 -0,029% 0,015%

14/04/2017 -0,034% 0,017%
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3.14

Scaled relative price returns
Given the relative price return time series” and the volatility computed according to the EIWMA
methodology outlined in the previous paragraph, it is then possible to compute the scaled

relative price return time series.

In particular, the scaling factor applied to each observation is computed according to the

following formula (mid-volatility approach):

(5) scaling_factor, = UZT—T
*Ot

with op: EWMA wvolatility computed for the most recent observation of the time series
(therefore, evaluation day - 1 day); oy EWNMA wolatility computed for the specific
observation which the scaling factor is applied to (full-volatility approach would have been

characterized by the formula scaling_factor, = ?).
t

The scaling factor is applied to each observation of the relative price return time series according

to the following formula:
(6) scaled_price_return, = unscaled_price_return; * scaling_factor;

Consider the previous example time seties (evaluation date: 15/04/2017): ot is equal to

0,017% and the scaled relative price return time series is as follows:

Date Unscaled relative price EWMA volatility Scaled relative price

return return
05/04/2017 0,010% 0,010% 0,014%
06/04/2017 0,024% 0,011% 0,031%
07/04/2017 0,027% 0,013% 0,031%
10/04/2017 0,005% 0,013% 0,006%
11/04/2017 -0,014% 0,013% -0,016%
12/04/2017 -0,021% 0,013% -0,024%
13/04/2017 -0,029% 0,015% -0,031%
14/04/2017 -0,034% 0,017% -0,034%

3.2 Price scenarios definition

It is then necessary to define a series of price scenarios with length equal to the lookback period.
Each price scenario 1s computed on the basis of the chosen holding period as the ratio between
the observation for which the specific price scenario is being calculated and the /p day-earlier
observation (e.g. if /p is equal to 5 days each price scenario is computed as the ratio between

the current observation and the 5-day eatlier observation):

4 The part of the time series of interest is that post-scaling window. Its length is therefore equal to 7 (chosen
lookback period).
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3.2.1

3.2.2

(7) price_scenario, =

priceg

price;_pp

Both scaled and unscaled price scenarios are computed.

Scaled price scenarios

In particular, the scaled price scenarios can be computed employing the scaled relative price return

time  series. Each

relative_price_return, =

(8) scaled_price_scenario, = scaled_relative_price_return, + 1.

relative  price
price;

pricec_pp

return

is  indeed

already

computed  as

— 1. One can thus compute the price scenario as:

It is possible to summarize the process for obtaining the scaled price scenarios the following

way:

Table 19: Scaled price scenarios computation

Date

Unscaled relative price
return

Scaled relative price
return

Scaled price scenario

price_1 / price_1-hp - 1

(ptice_1 / price_1-hp — 1)
* scaling_factor_1

(ptice_1 / price_1-hp — 1)
* scaling_factor_1 + 1

ptice_n / price_n-hp - 1

(ptice_n / ptice_n-hp — 1)
* scaling_factor_n

(ptice_n / ptice_n-hp — 1)
* scaling_ factor_n + 1

The methodology for calculating the scaling factor is described in the previous section.

Always considering the previous example, we therefore have:

Date Scaled relative price Scaled price scenario
return
05/04/2017 0,014% 1,00014
06/04/2017 0,031% 1,00031
07/04/2017 0,031% 1,00031
10/04/2017 0,006% 1,00006
11/04/2017 -0,016% 0,99984
12/04/2017 -0,024% 0,99976
13/04/2017 -0,031% 0,99969
14/04/2017 -0,034% 0,99966

Unscaled price scenarios
The unscaled price scenarios can instead be computed simply skipping, with reference to what
outlined in the previous paragraph, the relative price return-scaling factor multiplication step. It is

indeed sufficient to compute the price scenarios employing formula (7):
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Table 20: Unscaled price scenarios computation

Date Unscaled price scenario
1 price_1 / price_1-hp
n ptice_n / price_n-hp
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4

4141

Expected Shortfall

The Expected Shortfall (ES) is a risk measure consisting in the average of the tail events of a
given distribution. It is preferred to the [Va/ue at Risk (I7aR) risk measure, which basically
consists of the quantile of that distribution above which the tail actually ‘starts’, as it is
coherent and more conservative. It is also called Conditional-1"aR (C-1"aK).

The risk measure can either be wndiversified or diversified, depending on whether it is computed
‘per block’ (7.e. without inter-country diversification benefits) or ‘as a unique block’ (Z.e.
allowing those benefits). Practically speaking, in one case (the wndiversified case) the country
portfolios are revalued separately from one another in their set of historical scenarios and
the respective risk measures are computed; in the other case (the diversified case) the portfolio
is revalued as a whole and a unique risk measure is computed (therefore there will be a
unique set of historical scenarios).

Whatever the particular choice is, the current market value of a portfolio is revalued in a set
of historical scenarios. These revaluations are then compared to the former and a set of
profits/losses is obtained. This P&L distribution will be characterized by some extreme
profits in one tail and some extreme losses in the other tail.

4.1 Undiversified Expected Shortfall calculation

Undiversified Expected Shortfall (per country)

In order to compute the wndiversified Expected Shortfall consider a simple hypothetical portfolio
consisting of bonds issued by a single country, whose cash flows (at market value) are
mapped on the first 3 tenors only of the reference ZC curve. The cash-flow mapping
structure can be represented as follows:

Table 21: Margined portfolio cash-flow mapping

Tenor Cash flows mapped
3M Cashflow_3M
6M Cashflow_6M
1Y Cashflow_1Y

Consider also the following 7 (chosen /lookback period) scaled | unscaled price scenarios defined
according to the methodology outlined in the previous section:

Table 22: Price scenarios

Date 3M 6M 1Y

Pricescenario_1_3M

Pricescenario_1_6M

Pricescenario_1_1Y

Pricescenario_2_3M

Pricescenario_2_6M

Pricescenario_2_1Y

Pricescenario_n-1_3M

Pricescenario_n-1_6M

Pricescenario_n-1_1Y
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Pricescenario_n_3M

Pricescenario_n_6M

Pricescenario_n_1Y

The market value of the cash flows mapped on each relevant tenor of the ZC curve must be
revalued in each price scenario:

Table 23: Cash flows revaluation per tenor

Date 3M 6M 1Y
1 Pricescenario_1_3M * Pricescenario_1_6M * Pricescenario_1_1Y *
Cashflow_3M Cashflow_6M Cashflow_1Y
5 Pricescenario_2_3M * Pricescenario_2_6M * Pricescenario_2_1Y *
Cashflow_3M Cashflow_6M Cashflow_1Y
o Pricescenario_n-1_3M * Pricescenario_n-1_6M * Pricescenario_n-1_1Y *
Cashflow_3M Cashflow_6M Cashflow_1Y
a Pricescenario_n_3M * Pricescenario_n_6M * Pricescenario_n_1Y *
Cashflow_3M Cashflow_6M Cashflow_1Y

Once the revalued (per tenor and price scenario) market value of each cash flow has been

computed, it is possible to compute the revalued market value of the entire portfolio subject
to margining in each price scenario:

Table 24: Portfolio revaluation

Date

Revalued portfolio

Pricescenario_1_3M *
Cashflow_3M +
Pricescenario_1_6M *
Cashflow_6M +
Pricescenario_1_1Y *
Cashflow_1Y

Pricescenario_2_3M *
Cashflow_3M +
Pricescenario_2_6M *
Cashflow_6M +
Pricescenario_2_1Y *
Cashflow_1Y

n-1

Pricescenario_n-1_3M *
Cashflow_3M +
Pricescenario_n-1_6M *
Cashflow_6M +
Pricescenatio_n-1_1Y *
Cashflow_1Y

Pricescenario_n_3M *
Cashflow_3M +
Pricescenario_n_6M *
Cashflow_6M +
Pricescenario_n_1Y *
Cashflow_1Y
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Having the revalued market value of the portfolio subject to margining in each price scenario

and its current market value it is possible to compute its profit/loss in each price scenario:

Table 25: Portfolio profit/loss per price scenario

Date

Revalued portfolio

Current portfolio

Profit/Loss

Pricescenario_1_3M *
Cashflow_3M +
Pricescenario_1_6M *
Cashflow_6M +
Pricescenario_1_1Y *
Cashflow_1Y =
Revalued market value 1

Current martket value

Revalued market value 1 —
Current market value

Pricescenario_2_3M *
Cashflow_3M +
Pricescenario_2_6M *
Cashflow_6M +
Pricescenario_2_1Y *
Cashflow_1Y =
Revalued market value 2

Current market value

Revalued market value 2 —
Current market value

Pricescenario_n-1_3M *
Cashflow_3M +
Pricescenario_n-1_6M *
Cashflow_6M +
Pricescenario_n-1_1Y *
Cashflow_1Y =
Revalued market value n-1

Current market value

Revalued market valne n-1 —
Current market value

Pricescenario_n_3M *
Cashflow_3M +
Pricescenario_n_6M *
Cashflow_6M +
Pricescenario_n_1Y *
Cashflow_1Y =
Revalued market value n

Current market value

Revalued market value n —
Current market value

Having the portfolio profit/loss in each price scenario it is possible to compute the portfolio
undiversified Expected Shortfall according to two different approaches:

o Single tail approach (worst losses):

The single tail approach implies that only losses are considered. These losses are sorted from
the worst to the less serious and, given the chosen confidence level, the portfolio undiversified
Expected Shortfall is computed as average of the tail observations.

For example, consider a 5 day-lokback period, a 80% confidence level and the following set of
portfolio profits/losses (net long position):

Date Revalued portfolio Current portfolio Profit/Loss
1 10 10 0
2 8 10 -2
3 12 10 2
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4 7 10 -3

5 7,5 10 -2,5

We sort the profits/losses from the worst loss to best profit and obtain:

Date Revalued portfolio Current portfolio Gain/Loss
4 7 10 -3
5 7,5 10 -2,5
2 8 10 -2
1 10 10 0
3 12 10 2

It is then necessary to compute the number of observations in the tail of the P&L
distribution given the chosen /lokback period and confidence level, as number of observations’ * (1 —
confidence level), rounding the result to the nearest integer. In the example the number of tail
observations is then equal to 1. The wndiversified Expected Shortfall of the portfolio is equal to
the average of the tail observations (in absolute terms). In the example it amounts to 3.

®  Double tail approach (worst absolute variations):

The double tail approach implies that all variations are considered, in absolute terms. These
absolute variations are sorted from the greatest to the smallest and, given the chosen
confidence level, the portfolio wundiversified Expected Shortfall is computed as average of tail
observations.

For example, consider a 5 day-lookback period, a 80% confidence level and the following set of
portfolio absolute variations:

Date Revalued portfolio Current portfolio Profit/Loss absolute
value
1 10 10 0
2 8 10 2
3 12 10 2
4 7 10 3
5 7,5 10 2,5

We sort the absolute variations from the greatest to the smallest and obtain:

Date Revalued portfolio Current portfolio Profit/Loss absolute
value
4 7 10 3
5 7,5 10 2,5
2 8 10 2
3 12 10 2
1 10 10 0

5> Equal to the lokback period.
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4.1.2

It is then necessary to calculate the number of tail observations given the chosen /lookback

period and confidence level, as number of observations’

* (1 — confidence level), rounding the result to
the nearest integer. In the example the number of tail observations is then equal to 1. The
undiversified Expected Shortfall of the portfolio is equal to the average of the selected

observations, in the example equal to 3.

In case the portfolio contains bonds issued by different sovereigns, the methodology
described above must be replicated for each sub-portfolio (consisting of all and only the
ISINs issued by a specific country and therefore mapped on a specific ZC curve). The
portfolio undiversified Expected Shortfall is then equal to the sum of the wndiversified Expected
Shortfalls of each sub-portfolio.

It is worthwhile mentioning that for countries such as Italy and Spain having both nominal
and real ZC curves the adopted country-approach would be the diversified one. Therefore, Italian
nominal and real sub-portfolios would lead to a unique diversified country Expected Shortfall, the same
can be said about Spain; finally, all country Expected Shortfalls would be summed up in an wndiversified
way.

Undiversified Expected Shortfall per sovereign zero-coupon bond tenor
Looking at the wndiversified Expected Shortfall from a different and narrower (than per country)
point of view, it is possible to compute the wndiversified Expected Shortfall per ZC curve tenot.

Going back to Table 23, instead of proceeding as described further, the revalued market
value per tenor-price scenario combination is directly compared to the market value of the sub-
portfolio mapped on that specific tenor. This means that an wndiversified Expected Shortfall for
each tenor of the ZC curves involved in the cash-flow mapping can be computed.

For example, consider the 3 month tenor in Table 23:

Date 3M

Pricescenario_1_3M *

1 Cashflow_3M

Pricescenario_2_3M *

2 Cashflow_3M

Pricescenario_n-1_3M *

n-l Cashflow_3M

Pricescenario_n_3M *
Cashflow_3M

The P&L distribution for that tenor can be computed as follows:

Date Revalued tenor Current tenor Profit/Loss

Pricescenario_1_3M *
1 Cashflow_3M =
Revalued market value 1

Revalued market value 1 —

Cashflow_3M Cashflow_3M

¢ Equal to the lookback period.
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Pricescenario_2_3M *
2 Cashflow_3M = Cashflow_3M Rmz[éed ﬁi g%ﬁ gﬁ\//i/e 2-
Revalued market value 2 AShEOW_
Pricescenario_n-1_3M *

n-1 Cashflow_3M = Cashflow_3M Rm/”éd ”}’l“ﬂ’/“’ ”gl”l\f nel =
Revalued market value n-1 AShEOW__.
Pricescenario_n_3M *

a Cashflow 3M = Cashflow._3M Revalued market value n —
Cashflow_3M
Revalued market value n

The calculation of the wndiversified Expected Shortfall per single tenor follows the same logic
(including the single tail | double tail approach distinction) as that described in the previous
paragraph.

4.1.3 Diversified Expected Shortfall calculation per country
As opposed to the undiversified Expected Shortfall calculation outlined above, the calculation of
the diversified Expected Shortfall is characterized by the acknowledgement of the investment
diversification benefit to the Clearing Member (of course only in case its portfolio contains
bonds issued by more than one country).

For example, consider the following cash flow structure:

Table 26: Margining portfolio cash-flow mapping (2)

Tenor Cash flows mapped
3M_ITA Cashflow_3M_ITA
6M_SPA Cashflow_6M_SPA

Consider also the following # (equal to the chosen lokback period) scaled | unscaled price scenarios

defined according to the methodology outlined in previous section:

Table 27: Price scenarios (2)

Date 3M_ITA 6M_SPA

Pricescenario_1_3M_ITA

Pricescenario_1_6M_SPA

2 Pricescenario_2_3M_ITA Pricescenario_2_6M_SPA
n-1 Pricescenario_n-1_3M_ITA Pricescenario_n-1_6M_SPA
n Pricescenario_n 3M_ITA Pricescenario_n_6M_SPA

The cash flows mapped on each relevant tenor of each reference ZC curve are revalued in

each price scenario:

Table 28: Cash flows revaluation per tenor (2)

Date

Revalued ITA sub-
portfolio

Revalued SPA sub-
portfolio

Pricescenario_1_3M_ITA *
Cashflow_3M_ITA

Pricescenatrio_1_6M_SPA *
Cashflow_6M_SPA
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4.1.4

5 Pricescenario_2_3M_ITA * Pricescenario_2_6M_SPA *
Cashflow_3M_ITA Cashflow_6M_SPA
ol Pricescenario_n-1_3M_ITA | Pricescenario_n-1_6M_SPA *
* Cashflow_3M_ITA Cashflow_6M_SPA
I Pricescenario_n_3M_ITA * Pricescenario_n_6M_SPA *
Cashflow_3M_ITA Cashflow_6M_SPA

Since in this example each sub-portfolio consists of cash flows mapped on a single tenor of a
ZC curve, Table 28 already represents the revalued country sub-portfolio. If there were cash
flows mapped on more than one tenor per ZC curve, for each sub-portfolio it would have

been necessary to make a calculation similar to that shown in Table 24.

The revalued market value of the entire portfolio in each price scenario is computed the

following way:

Table 29: Cash flows revaluation per tenor

Date Revalued I”,[:A sub- Revalued SP.A sub- Revalued portfolio
portfolio portfolio
Pricescenario_1_3M_ITA *
1 Pricescenario_1_3M_ITA * | Pricescenario_1_6M_SPA * Cashflow_3M_ITA +
Cashflow_3M_ITA Cashflow_6M_SPA Pricescenario_1_6M_SPA *
Cashflow_6M_SPA
Pricescenario_2_3M_ITA *
5 Pricescenario_2_3M_ITA * | Pricescenario_2_6M_SPA * Cashflow_3M_ITA +
Cashflow_3M_ITA Cashflow_6M_SPA Pricescenario_2_6M_SPA *
Cashflow_6M_SPA
Pricescenario_n-1_3M_ITA
0l Pricescenatio_n-1_3M_ITA | Pricescenario_n-1_6M_SPA * Cashflow_3M_ITA +
* Cashflow_3M_ITA * Cashflow_6M_SPA Pricescenario_n-1_6M_SPA
* Cashflow_6M_SPA
Pricescenario_n_3M_ITA *
I Pricescenario_n_3M_ITA * | Pricescenario_n_6M_SPA * Cashflow_3M_ITA +
Cashflow_3M_ITA Cashflow_6M_SPA Pricescenario_n_6M_SPA *
Cashflow_6M_SPA

The way to compute the diversified Expected Shortfall of the portfolio is the same as that
described above (the distinction between single tail and double tail approaches still applying).

Expected Shortfall calculation
We anticipated the Expected Shortfall is the average of a set of tail events. The ‘plain’ Expected
Shortfall is indeed a simple average, ze. each of the 7 tail events has a weight of 7/x. In other

words, all tail observations are equally weighted.

Table 30: Profits /losses tail observations

n

Profit/Loss

1

100

96
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The ‘plain’ Expected Shortfall is computed summing all equally weighted profits/losses. The
‘plain’ Expected Shortfall of such distribution amounts to 84 (average of the 10 observations).
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