A EURONEXT COMPANY

FIXED INCOME RISK ENGINE

Initial Margins

Methodological notes

Table of contents

1 Introduction 3
2 Cash-flow mapping 5
2.1 Coupon stream definition for bonds belonging to the margining portfolio 5
2.2 Cash flow mapping 22
3 Price scenarios 30
3.1 Scaling of the sovereign zero-coupon curve time series 30
3.2 Price scenarios definition 34
4 Expected shortfall 37
4.1 Undiversified Expected Shortfall calculation. 37

1 Introduction

The purpose of this document is to describe the steps for computing the Initial Margins Expected Shorfall of the portfolio subject to margining.

The securities to which the process described in this document is applied are the following:

1) Italian government bonds:
2) Spanish government bonds:
3) Irish government bonds:
4) Portuguese government bonds:

Therefore, corporate bonds and government bonds that are not part of the MTS GCEXTRA basket are currently excluded from the application of the Expected Shorffall computation (the current Initial Margins computation methodology based on SPAN-like margin intervals therefore remaining in force).

Cash-flow mapping

First, the cash flows of each security belonging to the portfolio subject to margining are assigned to the proper risk factors. In particular, the current market value of each security is split onto its cash flows (each having its own duration), which are subsequently mapped onto the proper tenors of the sovereign zero-coupon (ZC) spot curve which the security refers to (e.g. Italian ZC curve for Italian government bonds).

Cash-flow mapping is applied to a subset of the Clearing Member's portfolio composed only of cash and repo positions, as for forward starting repo positions, as illustrated in the Mark-toMarket Margins module, the exposure to the bond price movements is both long and short, thus resulting in a net 0 exposure.

Price scenarios

Then, price variation scenarios, both unscaled and EWMA-scaled, are computed for the ZC curves tenors impacted. These scenarios will be employed in the revaluation of the margined portfolio.

In particular, the scaling methodology is based on the introduction of a so-called smoothing factor (model parameter), through which it is possible to differently weigh observations of the time series based on current volatility regime. The scaling process consists of the following steps:

1) retrieving rate time series of the tenors of the $Z C$ curves;
2) converting rate time series into price time series;
3) computing (unscaled) relative price returns,
4) computing EWMA volatilities;
5) computing scaled relative price returns;
6) defining unscaled price scenarios;
7) defining scaled price scenarios.

Expected Shortfall

Once the (market value of the) cash flows of the portfolio subject to margining have been mapped onto the proper ZC curve tenors and the set of scaled and unscaled price scenarios for these tenors has been defined, the portfolio must be revalued in each of its aforementioned cash flows and price scenarios. The comparison between the total value of the revalued portfolio and its current market value yields the profit/loss in the specific price scenario. Given the chosen confidence levels (model parameters), the Expected Shortfall of the margined portfolio can be computed.

The Expected Shortfall can be undiversified or diversified depending on whether, in case of a portfolio composed of bonds issued by multiple countries, the benefit of the diversification between issuers undertaken by the Clearing Member is acknowledged or not.

2 Cash-flow mapping

2.1 Coupon stream definition

Preliminary to the cash-flow mapping procedure is the determination of the coupon stream of each of the securities belonging to the categories listed in the previous paragraph. Particular procedures must be applied to floating-rate securities (floaters - i.e. Italian CCTeu) and inflation-linked securities (linkers - i.e. Italian BTP Italia and BTP \mathcal{i} and Spanish linkers), as described in the following sub-paragraph.

2.1.1 Floaters and linkers

Input data needed
In order to correctly deal with floaters and linkers (whether European or Italian inflationlinked) the input data needed are:

1) $6 M$ Euribor zero-coupon spot curve at evaluation date;
2) 6 M Euribor time series;
3) Zero-coupon spot European inflation curve at evaluation date;
4) Zero-coupon spot Italian inflation curve at evaluation date;
5) European ex-tobacco CPI (CPTFEMU) time series;
6) Italian ex-tobacco CPI (FOI) time series.

Building the 6M Euribor ZC forward curve at evaluation date for CCTeus

CCTeus are Italian government bonds whose coupons are indexed to the 6M Euribor. In order to define the coupon stream it is therefore necessary to calculate the future value of the underlying rate at the various reset dates. The reset date is the day at which the 6M Euribor employed for defining a given coupon is set. The reset date for the current coupon is defined as the last coupon date -2 working days.

To this aim, the $6 M$ Euribor ZC spot curve is essential, the forvard rates being implied by the term structure.

Given a generic term structure, the following relation indeed holds:

Figure 2-1: Spot and forward rates

Assuming you want to invest $€ 1$ at 0 for 2 years there are two different options:

1) directly invest for 2 years at spot rate S 2 ;
2) invest for 1 year at spot rate S 1 and then reinvest the amount obtained for 1 year more at forward rate 1F1, i.e. the rate applied to financial operations that start in 1 year and end in 2 years.

Absence of arbitrage condition implies that the two investment options described above must be equivalent:
(1) $(1+\mathrm{S} 2)^{2}=(1+\mathrm{S} 1) *(1+1 \mathrm{~F} 1)$,
which in turn implies:
(2) $1 \mathrm{~F} 1=(1+\mathrm{S} 2)^{2} /(1+\mathrm{S} 1)-1$.

Each specific spot curve therefore implies a corresponding forward curve.
As far as CCTeus are concerned, in order to calculate the future coupon values, thus defining the coupon stream, it is necessary to start from the $6 M$ Euribor ZC spot curve.

Intermediate, unavailable tenors can be obtained linearly interpolating available ones (e.g. spot_rate_210 $=$ spot_rate_180 + (spot_rate_270 - spot_rate_180 $) *(210-180) /(270$ 180)).

Having the ZC spot curve, it is possible to proceed with the calculation of the respective discount factors:

Table 1: Discount factors calculation

Tenor	Rate	Discount factor
1	spot_rate_1	$1 /(1+$ spot_rate_1 $360)$
7	spot_rate_7	$1 /(1+$ spot_rate_7*7/ $360)$
\ldots	\ldots	\ldots
\ldots	\ldots	\ldots
2700	spot_rate_2700	$1 /(1+$ spot_rate_2700* $2700 / 360)$

according to the formula $\mathrm{df}=\frac{1}{(1+\mathrm{r} * \mathrm{~T})}$, with r : annual spot rate and T : reference tenor of the spot rate, expressed in year fraction (day count convention: act/360).

Given the calculated discount factors, it is possible to compute the $6 M$ forvard discount factors for each of the curve tenors according to the formula $\mathrm{df}_{\text {forward } _t}=\frac{d f_{t}+6 \mathrm{M}}{\mathrm{df}}$:

Table 2: Forward discount factors calculation

Tenor	Rate	Discount factor	6M forward discount factor
1	spot_rate_1	df_1	df_181/df_1
7	spot_rate_7	df_7	df_187/df_7
\ldots	\ldots	\ldots	\ldots
180	spot_rate_180	df_180	df_360 / df_180
\ldots	\ldots	\ldots	\ldots
2520	spot_rate_2520	df_2520	df_2700 / df_2520

For each of the calculated discount factors the respective $6 M$ forward discount factor must be computed (with the obvious exception of the discount factor corresponding to the last tenor, as we will see below). In detail, for each of them, the respective 6 M abead discount factor must be identified: if the latter is not directly available among those already computed, it is necessary to compute it by linear interpolation. For example, the $6 M$ forward discount factor for the O / N (i.e. 1d) rate will be equal to the ratio of the $181 d$ discount factor (starting tenor $=1$ day +6 months) to the $1 d$ discount factor. While the latter is directly available, the former must be calculated as linear interpolation between the 180d discount factor and the 210d discount factor $\left(d f _180+\left(d f _210-d f _180\right) *(181-180) /(210-180)\right)$. The $6 M$ forward discount factor for the $7 d$ rate will be equal to the ratio of the $187 d$ discount factor (starting tenor $=7$ days +6 months) to the $7 d$ discount factor. As in the previous case, the latter is directly available while the former must be calculated as linear interpolation between the discount factors within which it falls (again, 180 and 210 days). In order to compute the 180d discount factor no linear interpolation is instead needed, as the two terms of the ratio are both already available (180 and 360 days).

In the above representation, the calculation of the $6 M$ forward discount factors ends up at tenor 2520 (corresponding to 7 years), obtained as the ratio of the 2700 discount factor (7.5 years) to the 2520 d discount factor (7 years).

It is finally possible to proceed with the calculation of the $6 M$ forward rates for each of the tenors for which the respective $6 M$ forvard discount factor has been computed, according to the formula forward rate $_{t}=\frac{1-\mathrm{df}_{\text {forward }_{t}}}{\mathrm{dfforward}_{t} * \frac{180}{360}}$:

Table 3: Forward rates calculation

Tenor	Rate	Discount factor	6M forward discount factor	6M forward rate
1	spot_rate_1	df_1	fwd_df_1	$\begin{gathered} \hline(1-\text { fwd_df_1) } \\ /(\text { fwd_df_1 * } \\ 180 / 360) \\ \hline \end{gathered}$
7	spot_rate_7	df_7	fwd_df_7	$\begin{gathered} (1-\text { fwd_df_7) } \\ /(\text { fwd_df_7 } \\ 180 / 360) \\ \hline \end{gathered}$
...	\ldots	\ldots	\ldots	\ldots
180	spot_rate_180	df_180	fwd_df_180	$\begin{gathered} (1- \\ \text { fwd_df_180) / } \\ \text { (fwd_df_180 * } \\ 180 / 360) \end{gathered}$
\ldots	\ldots	\ldots
2520	spot_rate_2520	df_2520	fwd_df_2520	$\begin{gathered} (1- \\ \text { fwd_df_2520) } \\ / \\ \text { (fwd_df_2520 } \\ * 180 / 360) \end{gathered}$

Once built the $6 M$ forvard curve at evaluation date, it is possible to proceed with the definition of the coupon stream of the CCTeus indexed to 6 M Euribor.

Coupon stream definition for CCTeus

In order to define the coupon stream for CCTeus it is necessary to know, in addition to the forward values of the underlying rate, the fixed annual spread applied to them (CCTeus indeed semiannually pay $6 M$ Euribor + spread $)$. The sum of these annual rates and the annual spread component - multiplied by the number of days between contiguous coupon dates, i.e. 6 months - defines the coupons.

Consider the following example:

- ISIN: IT0005104473;
- Maturity date: 15/12/2019;
- Current coupon rate: 0,14;
- Spread: 0,55\%;
- Coupon frequency: 6 months;
- Principal: 100;
- Evaluation date: 20/04/2018.

Consider the following 6M Euribor forward curve at evaluation date:

Tenor	Days	6M Euribor forward rate
O/N	1	$-0,00324$
1W	7	$-0,00318$
1 M	30	$-0,00293$
2 M	60	$-0,00267$
3 M	90	$-0,00238$
6 M	180	$-0,00258$
7 M	210	$-0,00243$
8M	240	$-0,00229$
9M	270	$-0,00236$
1YR	360	$-0,00186$
1,5YR	540	0,00183
2YR	720	0,00372

The first step is the determination of the future coupon dates:

Coupon date
$15 / 06 / 2018$
$15 / 12 / 2018$
$15 / 06 / 2019$
$15 / 12 / 2019$

Subsequently, it is necessary to determine the reset date of each future coupon date (payment) and compute the relative time to payment, i.e. the number of days between evaluation date (in the example, 20/04/2018) and each reset date:

Coupon date	Reset date	Time to payment (days)
$15 / 06 / 2018$	$13 / 12 / 2017$	past
$15 / 12 / 2018$	$13 / 06 / 2018$	54
$15 / 06 / 2019$	$13 / 12 / 2018$	237
$15 / 12 / 2019$	$13 / 06 / 2019$	419

For each time to payment, as shown in the table below, the corresponding $6 M$ Euribor forward rate is identified (linearly interpolated or directly available looking at the curve in case the time to payment coincides with one of its tenors).

Coupon date	Reset date	Time to payment (days)	6M Euribor forward rate
$15 / 06 / 2018$	$13 / 12 / 2017$	past	unnecessary 1
$15 / 12 / 2018$	$13 / 06 / 2018$	54	$-0,002722$
$15 / 06 / 2019$	$13 / 12 / 2018$	237	$-0,002304$
$15 / 12 / 2019$	$13 / 06 / 2019$	419	0,0006505

It is finally possible to proceed with the calculation of each coupon employing the following formula:
(4) coupon $=\max \left(0 ;(\right.$ forward_rate + spread $) *$ principal $\left.* \frac{\text { coupon_date-last_coupon_date }}{360}\right)$.

The 15/12/2018 coupon payment will thus be:
$(-0,002722+0,0055) * 100 * \frac{15 _12 _2018-15 _06 _2018}{360}=0,14$;
and so on for the other coupon dates (rounding: 2 decimal places).
At maturity, the payment will be equal to what obtained employing formula (4) plus the repayment of the principal of the bond. The coupon stream of the CCTeu of the example can therefore be summarized as in the following table:

Coupon date	Coupon	Notes
$15 / 06 / 2018$	0,14	known, coupon
$15 / 12 / 2018$	0,14	coupon
$15 / 06 / 2019$	0,16	coupon
$15 / 12 / 2019$	100,31	coupon + principal

Building the CPI curves for linkers

In order to define the coupon stream for linkers, it is necessary to leverage on the relevant ZC spot inflation curves to lengthen the time series of the relevant CPIs with their forward values.

First, we need to differentiate between the three types of linkers which may be subject to margining:

- BTP Italia - Italian government bonds linked to Italian ex-tobacco inflation (FOI);
- BTP€i - Italian government bonds linked to European ex-tobacco inflation (CPTFEMU);
- Spanish government bonds linked to European ex-tobacco inflation (CPTFEMU).

[^0]Depending on the type of security subject to margining, it is therefore necessary to proceed with the calculation of different forward CPI values (FOI or CPTFEMU), depending on whether the security is indexed to Italian or European ex-tobacco inflation. The first step is, as anticipated, the retrieval of the relevant ZC spot inflation curve.

Before proceeding with the calculation of the forward CPI values it is also necessary to retrieve the CPI time series. Both CPIs are updated on a monthly basis (usually at mid-month) and with a time lag of 1 month (e.g. at mid-April the March CPI value is published). The aforementioned time series will thus have monthly observations and can be represented as follows:

Table 4: $F O I$ time series

Date	FOI CPI
$31-03-2018$	FOI_cpi_0318
$28-02-2018$	FOI_cpi_0218
$31-01-2018$	FOI_cpi_0118
$31-12-2017$	FOI_cpi_1217
\ldots	\ldots

Table 5: CPTFEMU time series

Date	CPTFEMU CPI
$31-03-2018$	CPTFEMU_cpi_0318
$28-02-2018$	CPTFEMU_cpi_0218
$31-01-2018$	CPTFEMU_cpi_0118
$31-12-2017$	CPTFEMU_cpi_1217
\ldots	\ldots

Once the time series are available, it is necessary to identify the base value which will be employed in the calculation of the forward CPI values. The base value is the 3 months-earlier CPI value (3 months-time lag) at evaluation date (e.g. if the evaluation date is 04/05/2018 the base value will be the 28/02/2018 (February) CPI value).

The forward CPI values can then be calculated as follows:
Table 6: Forward CPI - FOI

Tenor (years)	ZC spot inflation rate	Forward CPI
1	FOI_ZC_1yr_rate	$\begin{gathered} \left(1+{\text { FOI_ZC_1yr_rate })^{\wedge}}^{\wedge} 1\right. \\ * \text { base value } \end{gathered}$
2	FOI_ZC_2yr_rate	$\begin{gathered} (1+\text { FOI_ZC_2yr_rate })^{\wedge} 2 \\ \text { * base value } \end{gathered}$
3	FOI_ZC_3yr_rate	$\begin{gathered} (1+\text { FOI_ZC_3yr_rate })^{\wedge} 3 \\ \text { * base value } \end{gathered}$
4	FOI_ZC_4yr_rate	$(1+$ FOI_ZC_4yr_rate)^ 4

		* base value
5	FOI_ZC_5yr_rate	$\begin{gathered} (1+\text { FOI_ZC_5yr_rate })^{\wedge} 5 \\ * \text { base value } \end{gathered}$
6	FOI_ZC_6yr_rate	$\begin{gathered} (1+\text { FOI_ZC_6yr_rate })^{\wedge} 6 \\ * \text { base value } \end{gathered}$
7	FOI_ZC_7yr_rate	$\begin{gathered} (1+\text { FOI_ZC_7yr_rate })^{\wedge 7} \\ \text { * base value } \end{gathered}$
8	FOI_ZC_8yr_rate	$\begin{gathered} (1+\text { FOI_ZC_8yr_rate })^{\wedge} 8 \\ * \text { base value } \end{gathered}$
9	FOI_ZC_9yr_rate	$\begin{gathered} (1+\text { FOI_ZC_9yr_rate })^{\wedge} 9 \\ * \text { base value } \\ \hline \end{gathered}$
10	FOI_ZC_10yr_rate	$\begin{gathered} (1+\text { FOI_ZC_10yr_rate })^{\wedge} \\ 10 * \text { base value } \end{gathered}$
12	FOI_ZC_12yr_rate	$\begin{gathered} (1+\text { FOI_ZC_12yr_rate })^{\wedge} \\ 12 * \text { base value } \\ \hline \end{gathered}$
15	FOI_ZC_15yr_rate	$\begin{gathered} (1+\text { FOI_ZC_15yr_rate })^{\wedge} \\ 15 * \text { base value } \end{gathered}$
20	FOI_ZC_20yr_rate	$\begin{gathered} (1+\text { FOI_ZC_20yr_rate })^{\wedge} \\ 20^{*} \text { base value } \end{gathered}$
25	FOI_ZC_25yr_rate	$\begin{gathered} \hline(1+\text { FOI_ZC_25yr_rate })^{\wedge} \\ 25^{*} \text { base value } \end{gathered}$
30	FOI_ZC_30yr_rate	$\begin{gathered} (1+\text { FOI_ZC_30yr_rate })^{\wedge} \\ 30^{*} \text { base value } \end{gathered}$

Table 7: Forward CPI-CPTFEMU

Tenor (years)	ZC spot inflation rate	Forward CPI
1	CPTFEMU_ZC_1yr_rate	$\begin{gathered} \text { (1+CPTFEMU } \\ \text { ZC_1yr_rate } \wedge^{\wedge} 1 * \text { base } \\ \text { value } \end{gathered}$
2	CPTFEMU _ZC_2yr_rate	$\begin{aligned} & \text { (1+ CPTFEMU } \\ & \text { _ZC_2yr_rate })^{\wedge} 2 * \text { base } \\ & \text { value } \end{aligned}$
3	CPTFEMU _ZC_3yr_rate	$\begin{aligned} & \text { (1+CPTFEMU } \\ & \text { ZC_3yr_rate }{ }^{\wedge}{ }^{\text {_ }} \text { value } \end{aligned}$
4	CPTFEMU _ZC_4yr_rate	
5	CPTFEMU _ZC_5yr_rate	$\begin{aligned} & \text { (1+ CPTFEMU } \\ & \text { _ZC_5y__rate })^{\wedge} 5 * \text { base } \\ & \text { value } \end{aligned}$
6	CPTFEMU _ZC_6yr_rate	$\begin{aligned} & \text { (1+ CPTFEMU } \\ & \text { _ZC_6yr_rate })^{\wedge} 6 * \text { base } \\ & \text { value } \end{aligned}$
7	CPTFEMU _ZC_7yr_rate	$\begin{gathered} (1+\text { CPTFEMU } \\ \text { ZCC_7yr_rate })^{\wedge} 7 * \text { base } \end{gathered}$

		value
8	CPTFEMU _ZC_8yr_rate	$\begin{aligned} & \text { (} 1+\text { CPTFEMU } \\ & \text { ZZC_8yr_rate })^{\wedge} 8^{*} \text { value } \end{aligned}$
9	CPTFEMU _ZC_9yr_rate	$\begin{aligned} & \text { (1+ CPTFEMU } \\ & \text { ZCC_9yr_rate) } \wedge^{\wedge} 9 * \text { base } \\ & \text { value } \end{aligned}$
10	CPTFEMU _ZC_10yr_rate	$\begin{aligned} & (1+\text { CPTFEMU } \\ & \text { _ZC_10yr_rate }) \wedge 10 * \text { base } \\ & \text { value } \end{aligned}$
12	CPTFEMU _ZC_12yr_rate	$\begin{gathered} (1+\text { CPTFEMU } \\ \text { ZC_12yr_rate })^{\wedge} 12 * \text { base } \\ \text { value } \end{gathered}$
15	CPTFEMU _ZC_15yr_rate	$\begin{gathered} (1+\text { CPTFEMU } \\ \text { ZC_15yr_rate })^{\wedge} 15 * \text { base } \\ \text { value } \end{gathered}$
20	CPTFEMU _ZC_20yr_rate	$\begin{gathered} (1+\text { CPTFEMU } \\ \text { _ZC_20yr_rate }) \wedge \\ \text { value } \end{gathered}$
25	CPTFEMU _ZC_25yr_rate	$\begin{gathered} (1+\text { CPTFEMU } \\ \text { ZC_25yr_rate })^{\wedge} 25^{*} \text { base } \\ \text { value } \end{gathered}$
30	CPTFEMU _ZC_30yr_rate	$\begin{gathered} (1+\text { CPTFEMU } \\ \text { _ZC_30yr_rate })_{\substack{\wedge}}^{\text {value }} 30 * \text { base } \end{gathered}$

It is then possible to lengthen the observed CPI time series with the computed forvard CPI values to have a complete (observed and forward) time series of CPI values, through which it is possible to define the coupon stream for the linkers. The two complete time series can be represented as follows (assuming as base value that of March 2018):

Table 8: $F O I$ complete time series

Date	FOI CPI
$31-03-2048$	forward_FOI_cpi_30yr
\ldots	\ldots
$31-03-2027$	forward_FOI_cpi_9yr
$31-03-2026$	forward_FOI_cpi_8yr
$31-03-2025$	forward_FOI_cpi_7yr
$31-03-2024$	forward_FOI_cpi_6yr
$31-03-2023$	forward_FOI_cpi_5yr
$31-03-2022$	forward_FOI_cpi_4yr
$31-03-2021$	forward_FOI_cpi_3yr
$31-03-2020$	forward_FOI_cpi_2yr
$31-03-2019$	forward_FOI_cpi_1Yr
$31-03-2018$	FOI_cpi_0318

$28-02-2018$	FOI_cpi_0218
$31-01-2018$	FOI_cpi_0118
$31-12-2017$	FOI_cpi_1217
\ldots	\ldots
\ldots	\ldots

Table 9: CPTFEMU complete time series

Date	CPTFEMU CPI
$31-03-2048$	forward_CPTFEMU_cpi_30yr
\ldots	\ldots
$31-03-2027$	forward_CPTFEMU_cpi_9yr
$31-03-2026$	forward_CPTFEMU_cpi_8yr
$31-03-2025$	forward_CPTFEMU_cpi_7yr
$31-03-2024$	forward_CPTFEMU_cpi_6yr
$31-03-2023$	forward_CPTFEMU_cpi_5yr
$31-03-2022$	forward_CPTFEMU_cpi_4yr
$31-03-2021$	forward_CPTFEMU_cpi_3yr
$31-03-2020$	forward_CPTFEMU_cpi_2yr
$31-03-2019$	forward_CPTFEMU_cpi_1Yr
$31-03-2018$	CPTFEMU_cpi_0318
$28-02-2018$	CPTFEMU_cpi_0218
$31-01-2018$	CPTFEMU_cpi_0118
$31-12-2017$	CPTFEMU_cpi_1217
\ldots	\ldots

Coupon stream definition for linkers

Both coupons and principal of linkers are revalued on the basis of an indexation coefficient, which in turn is a function of the trend of the reference CPI over time.

In order to define the coupon stream, the following information are therefore essential:

- issue date;
- maturity date;
- real annual coupon rate;
- coupon frequency;
- principal;
- complete time series of the reference CPI (FOI or CPTFEMU).

For example, consider the following BTP€i at evaluation date: 20/04/2018:

- issue date: 23/04/2014;
- maturity date: 23/04/2020;
- real annual coupon rate: $0,825 \%$;
- coupon frequency: 6 months;
- principal: 100 ;
and the following complete time series of the reference CPTFEMU CPI, obtained as described above:

A EURONEXT COMPANY

CPTFEMU	
Date	Mid Price
$31 / 03 / 2048$	172,13
$31 / 03 / 2043$	156,61
$31 / 03 / 2038$	141,95
$31 / 03 / 2033$	128,12
$31 / 03 / 2030$	121,10
$31 / 03 / 2028$	116,84
$31 / 03 / 2027$	114,80
$31 / 03 / 2026$	112,92
$31 / 03 / 2025$	111,10
$31 / 03 / 2024$	109,36
$31 / 03 / 2023$	107,72
$31 / 03 / 2022$	106,28
$31 / 03 / 2021$	104,98
$31 / 03 / 2020$	103,77
$31 / 03 / 2019$	102,54
$31 / 03 / 2018$	101,70
$28 / 02 / 2018$	101,50
$31 / 01 / 2018$	101,50
$31 / 12 / 2017$	101,10
$30 / 11 / 2017$	100,80
$31 / 10 / 2017$	100,90
$30 / 09 / 2017$	101,10
$31 / 08 / 2017$	101,40
$31 / 07 / 2017$	101,00
$30 / 06 / 2017$	101,00
$31 / 05 / 2017$	101,10
$30 / 04 / 2017$	101,30
$31 / 03 / 2017$	101,00
$28 / 02 / 2017$	101,00
$31 / 01 / 2017$	100,60
$31 / 12 / 2016$	100,30
$30 / 11 / 2016$	100,00
$31 / 10 / 2016$	100,00
$30 / 09 / 2016$	100,00
$31 / 08 / 2016$	100,20
$31 / 07 / 2016$	100,00
$30 / 06 / 2016$	99,90
$31 / 05 / 2016$	99,70
$30 / 04 / 2016$	99,60
$31 / 03 / 2016$	99,60
$29 / 02 / 2016$	99,50
$31 / 01 / 2016$	99,70
$31 / 12 / 2015$	99,91
$30 / 11 / 2015$	99,91
$31 / 10 / 2015$	100,09
$30 / 09 / 2015$	99,91
$31 / 08 / 2015$	100,28
$31 / 07 / 2015$	100,09
$30 / 06 / 2015$	100,19
$31 / 05 / 2015$	100,09
$30 / 04 / 2015$	100,00
$31 / 03 / 2015$	99,91
$28 / 02 / 2015$	99,72
$31 / 01 / 2015$	99,44
$31 / 12 / 2014$	99,91
$30 / 11 / 2014$	99,91
$31 / 10 / 2014$	100,09
$30 / 09 / 2014$	100,00
$31 / 08 / 2014$	100,37
$31 / 07 / 2014$	100,19
$30 / 06 / 2014$	100,28
$31 / 05 / 2014$	100,19
$30 / 04 / 2014$	100,28
$31 / 03 / 2014$	100,09
$28 / 02 / 2014$	100,09
$31 / 01 / 2014$	100,19
$31 / 12 / 2013$	100,00

The first step in the definition of the coupon stream for linkers is to list the coupon dates (starting from issue date, including also past coupon dates):

Coupon date
$23 / 04 / 2014$
$23 / 10 / 2014$
$23 / 04 / 2015$
$23 / 10 / 2015$
$23 / 04 / 2016$
$23 / 10 / 2016$
$23 / 04 / 2017$
$23 / 10 / 2017$
$23 / 04 / 2018$
$23 / 10 / 2018$
$23 / 04 / 2019$
$23 / 10 / 2019$
$23 / 04 / 2020$

It is then necessary for each of the above dates to identify the relative 2 months-earlier and 3 months-earlier dates, transformed into month-ends:

Coupon date	Coupon date - 2 months	Coupon date - 3 months
$23 / 04 / 2014$	$28 / 02 / 2014$	$31 / 01 / 2014$
$23 / 10 / 2014$	$31 / 08 / 2014$	$31 / 07 / 2014$
$23 / 04 / 2015$	$28 / 02 / 2015$	$31 / 01 / 2015$
$23 / 10 / 2015$	$31 / 08 / 2015$	$31 / 07 / 2015$
$23 / 04 / 2016$	$29 / 02 / 2016$	$31 / 01 / 2016$
$23 / 10 / 2016$	$31 / 08 / 2016$	$31 / 07 / 2016$
$23 / 04 / 2017$	$28 / 02 / 2017$	$31 / 01 / 2017$
$23 / 10 / 2017$	$31 / 08 / 2017$	$31 / 07 / 2017$
$23 / 04 / 2018$	$28 / 02 / 2018$	$31 / 01 / 2018$
$23 / 10 / 2018$	$31 / 08 / 2018$	$31 / 07 / 2018$
$23 / 04 / 2019$	$28 / 02 / 2019$	$31 / 01 / 2019$
$23 / 10 / 2019$	$31 / 08 / 2019$	$31 / 07 / 2019$
$23 / 04 / 2020$	$29 / 02 / 2020$	$31 / 01 / 2020$

For each of the dates identified in the last two columns of the above table, the respective reference CPI value must be obtained from its complete time series, linearly interpolating where necessary:

Coupon date	Coupon date -2 months	Coupon date - 3 months	CPI m-2	CPI m-3
$23 / 04 / 2014$	$28 / 02 / 2014$	$31 / 01 / 2014$	100,0934	100,1867
$23 / 10 / 2014$	$31 / 08 / 2014$	$31 / 07 / 2014$	100,3735	100,1867
$23 / 04 / 2015$	$28 / 02 / 2015$	$31 / 01 / 2015$	99,7199	99,4398

$23 / 10 / 2015$	$31 / 08 / 2015$	$31 / 07 / 2015$	100,2801	100,0934
$23 / 04 / 2016$	$29 / 02 / 2016$	$31 / 01 / 2016$	99,5000	99,7000
$23 / 10 / 2016$	$31 / 08 / 2016$	$31 / 07 / 2016$	100,2000	100,0000
$23 / 04 / 2017$	$28 / 02 / 2017$	$31 / 01 / 2017$	101,0000	100,6000
$23 / 10 / 2017$	$31 / 08 / 2017$	$31 / 07 / 2017$	101,4000	101,0000
$23 / 04 / 2018$	$28 / 02 / 2018$	$31 / 01 / 2018$	101,5000	101,5000
$23 / 10 / 2018$	$31 / 08 / 2018$	$31 / 07 / 2018$	102,0512	101,9800
$23 / 04 / 2019$	$28 / 02 / 2019$	$31 / 01 / 2019$	102,4667	102,4024
$23 / 10 / 2019$	$31 / 08 / 2019$	$31 / 07 / 2019$	103,0520	102,9478
$23 / 04 / 2020$	$29 / 02 / 2020$	$31 / 01 / 2020$	103,6637	103,5662

For each of the rows of the above table an index number is computed according to the following formula:
(5) index_number $=\mathrm{CPI}_{\mathrm{m}-3}+\frac{\mathrm{d}-1}{\mathrm{dd}} *\left(\mathrm{CPI}_{\mathrm{m}-2}-\mathrm{CPI}_{\mathrm{m}-3}\right)$,
with d : coupon date for which the index number is computed and $d d$: number of days in the month which the coupon date belongs to (rounding: 5 decimal places):

Coupon date	Coupon date $\mathbf{- 2}$ months	Coupon date-3 months	CPI m-2	CPI m-3	Index number
$23 / 04 / 2014$	$28 / 02 / 2014$	$31 / 01 / 2014$	100,0934	100,1867	100,1183
$23 / 10 / 2014$	$31 / 08 / 2014$	$31 / 07 / 2014$	100,3735	100,1867	100,3193
$23 / 04 / 2015$	$28 / 02 / 2015$	$31 / 01 / 2015$	99,7199	99,4398	99,6452
$23 / 10 / 2015$	$31 / 08 / 2015$	$31 / 07 / 2015$	100,2801	100,0934	100,2259
$23 / 04 / 2016$	$29 / 02 / 2016$	$31 / 01 / 2016$	99,5000	99,7000	99,5533
$23 / 10 / 2016$	$31 / 08 / 2016$	$31 / 07 / 2016$	100,2000	100,0000	100,1419
$23 / 04 / 2017$	$28 / 02 / 2017$	$31 / 01 / 2017$	101,0000	100,6000	100,8933
$23 / 10 / 2017$	$31 / 08 / 2017$	$31 / 07 / 2017$	101,4000	101,0000	101,2839
$23 / 04 / 2018$	$28 / 02 / 2018$	$31 / 01 / 2018$	101,5000	101,5000	101,5000
$23 / 10 / 2018$	$31 / 08 / 2018$	$31 / 07 / 2018$	102,0512	101,9800	102,0305
$23 / 04 / 2019$	$28 / 02 / 2019$	$31 / 01 / 2019$	102,4667	102,4024	102,4495
$23 / 10 / 2019$	$31 / 08 / 2019$	$31 / 07 / 2019$	103,0520	102,9478	103,0218
$23 / 04 / 2020$	$29 / 02 / 2020$	$31 / 01 / 2020$	103,6637	103,5662	103,6377

Once an index number for each coupon date has been computed it is possible to calculate the relative indexation coefficient (IC), bearing in mind that the IC at issue date is equal to 1 and that the following $I C$ s are equal to:
$\mathrm{IC}_{\mathrm{t}}=\frac{\text { index_number }_{\mathrm{t}}}{\left.\text { max }_{\text {(ndex_n_number }}^{\mathrm{t}-1} \mathrm{~F} ; \ldots ; \text { index_number }_{0}\right)}$ for BTP Italia,
that is the ratio of the index number relative to the coupon date for which the $I C$ is computed and the maximum among the previous index numbers (rounding: 5 decimal places), and
$\mathrm{IC}_{\mathrm{t}}=\frac{\text { index_number }_{\mathrm{t}}}{\text { index_number }_{0}}$ for other linkers,
that is the ratio of the index number relative to the coupon date for which the $I C$ is computed and the issue date index numbers (rounding: 5 decimal places).

In the example below an example of computation of ICs for a BTP Italia is shown:

Coupon date	Index number	IC
$23 / 04 / 2014$	100,1183	1,0000
$23 / 10 / 2014$	100,3193	1,0020
$23 / 04 / 2015$	99,6452	0,9933
$23 / 10 / 2015$	100,2259	0,9991
$23 / 04 / 2016$	99,5533	0,9924
$23 / 10 / 2016$	100,1419	0,9982
$23 / 04 / 2017$	100,8933	1,0057
$23 / 10 / 2017$	101,2839	1,0039
$23 / 04 / 2018$	101,5000	1,0021
$23 / 10 / 2018$	102,0305	1,0052
$23 / 04 / 2019$	102,4495	1,0041
$23 / 10 / 2019$	103,0218	1,0056
$23 / 04 / 2020$	103,6377	1,0060

Since BTP Italias guarantee real coupons, in case of deflation $(I C<1)$ a floor equal to 1 is applied to the ICs. The adjusted ICs can therefore be defined as max (IC; 1):

Coupon date	Index number	IC	Adjusted IC
$23 / 04 / 2014$	100,1183	1,0000	1,0000
$23 / 10 / 2014$	100,3193	1,0020	1,0020
$23 / 04 / 2015$	99,6452	0,9933	1,0000
$23 / 10 / 2015$	100,2259	0,9991	1,0000
$23 / 04 / 2016$	99,5533	0,9924	1,0000
$23 / 10 / 2016$	100,1419	0,9982	1,0000
$23 / 04 / 2017$	100,8933	1,0057	1,0057
$23 / 10 / 2017$	101,2839	1,0039	1,0039
$23 / 04 / 2018$	101,5000	1,0021	1,0021
$23 / 10 / 2018$	102,0305	1,0052	1,0052
$23 / 04 / 2019$	102,4495	1,0041	1,0041
$23 / 10 / 2019$	103,0218	1,0056	1,0056
$23 / 04 / 2020$	103,6377	1,0060	1,0060

In case of other linkers it is only the last IC to be floored at 1.
It is then possible to compute each coupon the following way:
coupon $_{t}=\frac{\text { real_annual_coupon_rate }}{\text { coupon_frequency }} *$ principal $* \mathrm{IC}_{\text {adjusted_t }}$:

Coupon date	Index number	IC	Adjusted IC	Coupon
$23 / 04 / 2014$	100,1183	1,0000	1,0000	$-^{-2}$
$23 / 10 / 2014$	100,3193	1,0020	1,0020	0,4133
$23 / 04 / 2015$	99,6452	0,9933	1,0000	0,4125
$23 / 10 / 2015$	100,2259	0,9991	1,0000	0,4125
$23 / 04 / 2016$	99,5533	0,9924	1,0000	0,4125
$23 / 10 / 2016$	100,1419	0,9982	1,0000	0,4125
$23 / 04 / 2017$	100,8933	1,0057	1,0057	0,4149
$23 / 10 / 2017$	101,2839	1,0039	1,0039	0,4141
$23 / 04 / 2018$	101,5000	1,0021	1,0021	0,4134
$23 / 10 / 2018$	102,0305	1,0052	1,0052	0,4147
$23 / 04 / 2019$	102,4495	1,0041	1,0041	0,4142
$23 / 10 / 2019$	103,0218	1,0056	1,0056	0,4148
$23 / 04 / 2020$	103,6377	1,0060	1,0060	0,4150

The revaluation of the principal amount is again differently treated:

BTP Italia:

The principal revaluation must be computed for each coupon date the following way: principal_revaluation ${ }_{t}=$ principal $* \max \left(\mathrm{IC}_{\mathrm{t}}-1 ; 0\right)$.

At maturity the principal reimbursement must be added to the final total payment.

Other linkers:

The revaluation of the principal amount is paid only at maturity. Therefore, before maturity the principal revaluation will be:
principal_revaluation ${ }_{t<>\mathrm{T}}=0$,
while at maturity the principal revaluation will depend on the ratio between the last (i.e. at maturity date) and the first (i.e. at issue date) index numbers:
principal_revaluation ${ }_{\mathrm{t}=\mathrm{T}}=$ principal $* \max \left(\frac{\text { index_number }_{\mathrm{T}}}{\text { index_number }_{0}} ; 1\right)$.
The principal revaluation computed this way must be added to the previously computed coupon to get the final payment (rounding: 2 decimal places).

The example below again refers to a BTP Italia:

[^1]| Coupon
 date | IC | Adjusted IC | Coupon | Principal
 revaluation | Payment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $23 / 04 / 2014$ | 1,0000 | 1,0000 | - | - | - |
| $23 / 10 / 2014$ | 1,0020 | 1,0020 | 0,4133 | 0,2008 | 0,61 |
| $23 / 04 / 2015$ | 0,9933 | 1,0000 | 0,4125 | 0,0000 | 0,41 |
| $23 / 10 / 2015$ | 0,9991 | 1,0000 | 0,4125 | 0,0000 | 0,41 |
| $23 / 04 / 2016$ | 0,9924 | 1,0000 | 0,4125 | 0,0000 | 0,41 |
| $23 / 10 / 2016$ | 0,9982 | 1,0000 | 0,4125 | 0,0000 | 0,41 |
| $23 / 04 / 2017$ | 1,0057 | 1,0057 | 0,4149 | 0,5722 | 0,99 |
| $23 / 10 / 2017$ | 1,0039 | 1,0039 | 0,4141 | 0,3871 | 0,80 |
| $23 / 04 / 2018$ | 1,0021 | 1,0021 | 0,4134 | 0,2134 | 0,63 |
| $23 / 10 / 2018$ | 1,0052 | 1,0052 | 0,4147 | 0,5227 | 0,94 |
| $23 / 04 / 2019$ | 1,0041 | 1,0041 | 0,4142 | 0,4107 | 0,82 |
| $23 / 10 / 2019$ | 1,0056 | 1,0056 | 0,4148 | 0,5586 | 0,97 |
| $23 / 04 / 2020$ | 1,0060 | 1,0060 | 0,4150 | 0,5978 | 101,01 |

Once the complete stream of payments has been computed, obviously only future payments are considered for cash-flow mapping purposes. The final table of future payments will thus be as follows (evaluation date: 20/04/2018):

Coupon date	IC	Adjusted IC	Coupon	Principal revaluation	Payment
$23 / 04 / 2018$	1,0021	1,0021	0,4134	0,2134	0,63
$23 / 10 / 2018$	1,0052	1,0052	0,4147	0,5227	0,94
$23 / 04 / 2019$	1,0041	1,0041	0,4142	0,4107	0,82
$23 / 10 / 2019$	1,0056	1,0056	0,4148	0,5586	0,97
$23 / 04 / 2020$	1,0060	1,0060	0,4150	0,5978	101,01

2.1.2 Bullet bonds

Bullet bonds (bullets) are the simplest category among those described in this paragraph: it is indeed sufficient to define the sequence of the future coupon dates and compute each coupon as:
(7) coupon $_{t}=$ principal_amount $* \frac{\text { annual_coupon_rate }}{\text { coupon_frequency }}$.

For example, a bullet with a principal amount of 100 is assumed to pay semiannually a 5% annual rate every $30^{\text {th }}$ of September and $31^{\text {st }}$ of March until maturity ($30^{\text {th }}$ September 2020). If the evaluation date is 20/04/2018:

Date	Payment
$30 / 09 / 2018$	2,5
$31 / 03 / 2019$	2,5
$30 / 09 / 2019$	2,5
$31 / 03 / 2020$	2,5
$30 / 09 / 2020$	102,5

A particular sub-type of bullets are zero-coupon bonds (ZCs), with 0% coupon rate.

2.2 Cash-flow mapping

Once the coupon stream for each of the securities in the portfolio subject to margining has been defined, cash flows can be mapped to their respective risk factors.

Since cash flows can be potentially infinite, a mapping system is used that allows to reduce their number and map them to a finite and relatively small set of $Z C$ curve tenors called "vertices".

For example, assuming to have a single bond with a single cash flow in exactly 8 years and that 8 years is not a managed vertex of the reference $Z C$ curve, this cash flow will be split into a pair of cash flows at year 7 and 9 , if managed.

The two cash flows that originate from the original cash flow must be split in a way the current market value and the sign of the original cash flow are preserved.

This kind of mapping procedure, called cash flow mapping, allows to take into account the risk associated to each future cash flow generated by a bond, discounted at the appropriate rate, and also the non-perfect correlation between tenors (corresponding rates) of a ZC curve (as opposed to duration mapping or principal mapping).

In order to make the model manageable, cash flows, actually distributed along a continuum of maturities, are mapped to n tenors of the reference $Z C$ curve. Employed ZC curves are Italian nominal, Italian real, Spanish nominal, Spanish real, Irish nominal and Portuguese nominal.

Cash flows with a maturity that does not coincide with one of the n maturities of the reference $Z C$ curve are split on the two contiguous maturities, the one preceding and the one following the maturity of the cash flow, respecting the following three conditions:

- The market value must be preserved: The market value of the two originated cash flows must be equal to the market value of the original cash flow.
- The market risk must be preserved: The market risk of the two originated cash flows must be equal to the market risk of the original cash flow.
- The sign must be preserved: The two originated cash flows must both have the same sign as the original cash flow.

In order to apply the cash flow mapping procedure it is necessary to:

1) compute the time to payment (TTP) of each cash flow of each bond;
2) compute the yield to maturity of the bond which the particular cash flows belong to and then compute the market value of these cash flows;
3) analyze the ZC curve on which each bond is mapped in terms of volatility of each tenor and correlation among tenors;
4) calculate the weights used to map each cash flow (market value) on the contiguous vertices of the reference $Z C$ curve;
5) map each cash flow (market value) on the abovementioned vertices.

2.2.1 Time to payment definition

As previously mentioned, each security in the portfolio subject to margining is split into its future cash flows. For each of these cash flows it is necessary to identify the relative time to payment, as follows (act/act day count convention):
(8) $\mathrm{TTP}=\frac{\mathrm{n} \text { days in period } 365}{365}+\frac{\mathrm{n} \text { days in period } 366}{366}$.

Formula (8) allows to take into account leap years, in case cash flows fall within them. In particular, the accrual periods within non-leap years and within leap years are identified for each cash flow:

Figure 2-2: $\boldsymbol{T} T P$ definition

Figure 2-2 exemplifies a situation in which the time interval between 'evaluation date' and 'year 2' (start) constitutes the first term of (8), while the time interval between 'year 2' (start) and 'next coupon date' constitutes the second term of (8), with n days in period 365 (366):
actual number of days between the two dates. If a cash flow accrues entirely in a nonleap/leap year the second/first term of (8) is set to 0 .

Consider the following example:
Evaluation date: 20/04/2018;
Coupon date: 15/05/2020.
In this case the time to payment will be:
TTP $=\frac{(31 / 12 / 2018-20 / 04 / 2018)}{365}+1+\frac{(15 / 05 / 2020-31 / 12 / 2019)}{366}$.
It is then necessary to identify the issuer of each security in the portfolio subject to margining, in order to define on what ZC curve the security itself (its cash flows) will be mapped. We have to bear in mind that countries issuing both nominal and inflation-linked bonds will have two distinct curves.

For each security it is therefore necessary to build a table of the following type:
Table 10: Portfolio cash flow structure

Portfolio	ISIN	Issuer	TTP	Cash flow
X	IT000XXXXXXX	IT	TTP_1_bond_1	Cashflow_1_bond_1
X	IT000XXXXXXX	IT	TTP_2_bond_1	Cashflow_2_bond_1
X	ES00000XXXXX	ES	TTP_1_bond_2	Cashflow_1_bond_2
\ldots	\ldots	\ldots	\ldots	\ldots

Each cash flow must therefore be assigned to the proper ZC curve, in order to map its amount on the respective contiguous vertices.

2.2.2 Yield to maturity and market value calculation

To each cash flow must be assigned the yield to maturity of the bond which it belongs to. The calculation of the yield to maturity of a bond is fundamental as it represents the discount factor which allows to compute the market value of each of its cash flows (market value which in turn will be mapped on the ZC curve).

In order to perform this calculation it is necessary to use a fitting algorithm (e.g. Newton) which, fed by the data, allows to obtain the yield to maturity of all the securities in the portfolio subject to margining. In particular, given the dirty market price of a security and the schedule of its cash flows, the relative yield to maturity can be computed according to the formula below:

with i : time to payment of the given coupon and T: time to payment of the cash flow at maturity. Given the guess value $Y T M^{*}$, the chosen fitting algorithm will run until the difference between the theoretical dirty price (re)calculated according to the above formula and the dirty market price of the bond is below a predefined tolerance threshold.

Table 10 can then be integrated as follows:
Table 11: Portfolio cash flow structure and yield to maturity

Portfolio	ISIN	Issuer	TTP	Cash flow	Yield to maturity
X	IT000XXXXXXX	IT	TTP_1_bond_1	Cashflow_1_bond_1	Ytm_bond_1
X	IT000XXXXXXX	IT	TTP_2_bond_1	Cashflow_2_bond_1	Ytm_bond_1
X	ES00000XXXXX	ES	TTP_1_bond_2	Cashflow_1_bond_2	Ytm_bond_2
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

For each cash flow the relative market value must then be calculated by discounting the cash flow by the yield to maturity of the security it belongs to:

Table 12: Portfolio cash flow market value

TTP	Cash flow	Yield to maturity	Market value
TTP_1_bond_1	Cashflow_1_bond_1	Ytm_bond_1	Cashflow_1_bond_1 / (1 + Ytm_bond_1) ^ TTP_1_bond_1 * ps
TTP_2_bond_1	Cashflow_2_bond_1	Ytm_bond_1	Cashflow_2_bond_1 / (1 + Ytm_bond_1) ^ TTP_2_bond_1 * ps
TTP_1_bond_2	Cashflow_1_bond_2	Ytm_bond_2	Cashflow_1_bond_2 / (1 + Ytm_bond_2) ^ TTP_1_bond_2 * ps
\ldots	\ldots	\ldots	\ldots

with ps: position sign (i.e. +1 for long ISINs and -1 for short ISINs).
The sum of the market values of all the cash flows belonging to a given security has to be equal to the market value of the security itself.

2.2.3 Sovereign zero-coupon spot curve analysis

The time series of all the tenors (rates) of all the ZC curves must have length at least equal to the lookback period model parameter +1 :

Table 13: ZC curve tenors time series

Date	3M	\ldots	30Y
$\mathrm{t}-\mathrm{n}$	$\mathrm{w} _\mathrm{t}-\mathrm{n} \%$	\ldots	$z_{-} \mathrm{t}-\mathrm{n} \%$
$\mathrm{t}-\mathrm{n}+1$	$\mathrm{w} _\mathrm{t}-\mathrm{n}+1 \%$	\ldots	$z_{-} \mathrm{t}-\mathrm{n}+1 \%$
\ldots	\ldots	\ldots	\ldots
t	$\mathrm{w} _\mathrm{t} \%$	\ldots	$z_{2} \mathrm{t} \%$

In case of 'all available data' lookback period the time series will obviously be sufficient.
It is necessary to compute the following quantities:

1) volatility (σ) of each tenor of each $Z C$ curve;
2) correlation (ρ) of each pair of contiguous tenors of each $Z C$ curve.

In order to compute the volatility (σ) it is necessary to transform the rate time series into time series of daily rate absolute variations:

Table 14: ZC curve time series - daily variations

Date	3M	\ldots	30Y
$\mathrm{t}-\mathrm{n}$			
$\mathrm{t}-\mathrm{n}+1$	$\left(\mathrm{w} _\mathrm{t}-\mathrm{n}+1-\mathrm{w} _\mathrm{t}-\mathrm{n}\right) \%$	\ldots	$\left(\mathrm{z} _\mathrm{t}-\mathrm{n}+1-\mathrm{z} _\mathrm{t}-\mathrm{n}\right) \%$
\ldots	\ldots	\ldots	\ldots
t	$\left(\mathrm{w} _\mathrm{t}-\mathrm{w} _\mathrm{t}-1\right) \%$	\ldots	$\left(\mathrm{z} _\mathrm{t}-\mathrm{z} _\mathrm{t}-1\right) \%$

It is then possible to compute the (sample) volatility (σ) of each tenor according to formula:
(10) $\sigma=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{avg}}\right)^{2}}{\mathrm{n}-1}}$,
with $\mathrm{x}_{\text {avg }}$: average of the observations whose volatility is being computed (daily rate absolute variations).

Correlation (ρ) must be computed for all the pairs of contiguous tenors (of each ZC curve), with the exception of the last tenor, since there is no corresponding upper tenor.

For example, consider a ZC curve with the following structure:

$\mathbf{3 M}$	$\mathbf{6 M}$	$\mathbf{1 Y}$	$\mathbf{2 Y}$	$\mathbf{3 Y}$	$\mathbf{4 Y}$

Correlation (ρ) must be computed for the pairs of tenors $3 \mathrm{M} / 6 \mathrm{M}, 6 \mathrm{M} / 1 \mathrm{Y}, 1 \mathrm{Y} / 2 \mathrm{Y}, 2 \mathrm{Y} / 3 \mathrm{Y}$ and $3 \mathrm{Y} / 4 \mathrm{Y}$. The computation of ρ must be performed according to the following formula:
(11) $\rho=\left(\sum_{i=1}^{n}\left(x_{i}-x_{\text {avg }}\right)\left(y_{i}-y_{\text {avg }}\right) /(n-1)\right) / \sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-x_{\text {avg }}\right)^{2}}{n-1} \sum_{i=1}^{n} \frac{\left(y_{i}-y_{\text {avg }}\right)^{2}}{n-1}}$,
with x and y : down and $u p$ tenors, respectively.
For example, consider the following time series of daily rate absolute variations for the 3month and 6-month tenors of a specific $Z C$ curve:

Date	3M	$\mathbf{6 M}$
$12 / 04 / 2018$	$0,725 \%$	$0,725 \%$
$13 / 04 / 2018$	$0,543 \%$	$0,543 \%$
$16 / 04 / 2018$	$0,543 \%$	$0,283 \%$
$17 / 04 / 2018$	$0,972 \%$	$0,972 \%$
$18 / 04 / 2018$	$0,445 \%$	$0,445 \%$
$19 / 04 / 2018$	$0,445 \%$	$0,445 \%$
$20 / 04 / 2018$	$1,656 \%$	$1,656 \%$

The lookback period in the example is equal to 7 . $\mathrm{x}_{\text {avg }}$ and $\mathrm{y}_{\text {avg }}$ are equal to $0,761 \%$ e $0,724 \%$, respectively. According to formulas (10) and (11), the 3 month- and 6 month-tenor volatilities are equal to $0,436 \%$ and $0,468 \%$, respectively. Their correlation is instead equal to $97,88 \%$.

2.2.4 Weight calculation for cash-flow mapping

Once the TTP and the market value of each cash flow of each bond in the portfolio subject to margining have been computed, it is then possible to map each of these cash flows (their market values) on the tenors of the reference $Z C$ curves (i.e. the curve of the country issuing the bond).

For example, consider the following margining portfolio:

Portfolio	ISIN	Issuer	TTP	Cash flow market value
X	IT000XXXXXX1	IT	0,3	100.000
X	IT000XXXXXX2	IT	1,2	150.000

and Italian ZC curve structure:

$\mathbf{3 M}$	$\mathbf{6 M}$	$\mathbf{1 Y}$	$\mathbf{2 Y}$

Expressing the TTP in year fractions, the first cash flow (TTP: 0,3) has to be mapped between onto the 3 month- $(0,25)$ and 6 month- $(0,5)$ tenors. The second cash flow has instead to be mapped onto the 1 year- (1) and 2 year- (2) tenors: ${ }^{3}$

ISIN	Issuer	TTP	Market value	Down tenor	Up tenor
IT000XXXXXX1	IT	0,3	100.000	0,25	0,5
IT000XXXXXX2	IT	1,2	150.000	1	2

Once the relevant tenors of the reference $Z C$ curve have been identified, the down and $u p$ weights of each cash flow must be computed: these weights allow to map a certain fraction of the cash flow on the pair of relevant tenors within which the cash flow falls, in compliance with the principles outlined at the beginning of this paragraph.

It is therefore necessary to compute the interpolation coefficients $\varphi_{\text {down }}$ and $\varphi_{\text {up }}$ for each of the cash flows to map: these are function of the TTP of the cash flow and of the duration of the down and $u p$ tenors:
(12) $\varphi_{\text {up }}=\frac{\text { TTP - down_tenor }}{\text { up_tenor - down_tenor }}$;
(13) $\varphi_{\text {down }}=\left(1-\varphi_{\text {up }}\right)$,
${ }^{3}$ In case a cash flow has a TTP lower (higher) than the shortest (longest) tenor, it has to be entirely mapped on the latter.
thus obtaining:

TTP	Market value	Down tenor	Up tenor	$\boldsymbol{\varphi}_{\text {low }}$	$\boldsymbol{\varphi}_{\text {up }}$
0,3	100.000	0,25	0,5	0,8	0,2
1,2	150.000	1	2	0,8	0,2

The volatilities of the down $\left(\sigma_{\mathrm{n}}\right)$ and $u p\left(\sigma_{\mathrm{n}+1}\right)$ tenors of a cash flow, computed according to formula (10), are then multiplied by the respective interpolation coefficients (the volatility of the down tenor must be multiplied by the interpolation coefficient assigned to the down tenor $\varphi_{\text {down }}$, the volatility of the $u p$ tenor by the interpolation coefficient of the $u p$ tenor $\varphi_{\text {up }}$), this way obtaining σ_{n}^{*} and $\sigma_{\mathrm{n}+1}{ }^{\text {, i.e. the volatilities of the down and } u p \text { tenors of the cash flow adjusted by the }}$ respective interpolation coefficient.

By employing σ^{*} instead of σ it is possible to prevent the distortions that would arise in case the volatilities of two contiguous tenors were not regularly one greater than the other (with consequent abrupt fluctuations in the weights applied to the cash flows involved and hence fluctuations in the margin requirements not justified by changes in the riskiness of the portfolio itself).

The use of σ^{*} in the mapping procedure also allows to map the cash flows consistently with their positioning within the interval represented by the two contiguous vertices.

Let's indicate with W_{n} and $\mathrm{W}_{\mathrm{n}+1}$ the weights of the down and $u p$ tenors, respectively, with σ_{n}^{*} and $\sigma_{\mathrm{n}+1}^{*}$ their adjusted volatilities and with $\rho_{\mathrm{n}, \mathrm{n}+1}$ their correlation, according to formula (11).

Since the sum of the two weights must be equal to 1 (in order to respect the principle according to which the market value of the original cash flow to be mapped must be preserved), we have that:
$\mathrm{W}_{\mathrm{n}+1}=1-\mathrm{W}_{\mathrm{n}}$.
Furthermore,

$$
\sigma_{\mathrm{int}}^{*}=\sqrt{\mathrm{W}_{\mathrm{n}}^{2} \sigma_{\mathrm{n}}^{* 2}+\mathrm{W}_{\mathrm{n}+1}^{2} \sigma_{\mathrm{n}+1}^{*}+2 \mathrm{~W}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}+1} \sigma_{\mathrm{n}}^{*} \sigma_{\mathrm{n}+1}^{*} \rho_{\mathrm{n}, \mathrm{n}+1}} .
$$

We can therefore compute
(14) $\mathbb{W}_{n}=\frac{-\left(2 \sigma_{n}^{*} \sigma_{n+1}^{*} \rho_{n, n+1}-2 \sigma_{n+1}^{2}\right) \pm \sqrt{\left(2 \sigma_{n}^{*} \sigma_{n+1}^{*} \rho_{n, n+1}-2 \sigma_{n+1}^{2}\right)^{2}-4\left(\sigma_{n}^{* 2}+\sigma_{n+1}^{* 2}-2 \sigma_{n}^{*} \sigma_{n+1}^{*} \rho_{n, n+1}\right)\left(\sigma_{n+1}^{* 2}-\sigma_{\mathrm{int}}^{2}\right)}}{2\left(\sigma_{n}^{* 2}+\sigma_{n+1}^{* 2}-2 \sigma_{\mathrm{n}}^{*} \sigma_{\mathrm{n}+1}^{*} \rho_{\mathrm{n}, \mathrm{n}+1}\right)}$,
with $\sigma_{\text {int }}^{*}=\varphi_{\text {down }} \sigma_{\mathrm{n}}^{*}+\varphi_{\text {up }} \sigma_{\mathrm{n}+1}^{*}$.

The fundamental theorem of algebra implies that formula (14) yields two solutions: in order to respect the principle according to which the sign of the original cash flow to be mapped must be preserved, it is necessary to choose the value of W_{n} which is between 0 and 1 .

Based on the above, each cash flow can then be mapped on the down and $u p$ tenors, after having multiplied its market value by the respective weights:

TTP	Market vale	$\mathbf{W}_{\mathbf{n}}$	$\mathbf{W}_{\mathbf{n}+1}$	Cash flow down	Cash flow up
TTP_1	Marketvalue_cashflow_1	w	x	Marketvalue_cashflow_1 $*_{\mathrm{w}}$	Marketvalue_cashflow_1 $*_{\mathrm{x}}$
TTP_2	Marketvalue_cashflow_2	y	z	Marketvalue_cashflow_2 $*_{\mathrm{y}}$	Marketvalue_cashflow_2 $*_{\mathrm{z}}$

To summarize, for each ISIN in the portfolio subject to margining the structure of its future cash flows is defined. The relative market value is then computed (with positive or negative sign depending on the nature of the position) and mapped on the contiguous tenors of the reference $Z C$ curve, according to the value of the statistical quantities characterizing the curve tenors themselves and to the TTP of the cash flow.

2.2.5 Market value mapping on sovereign zero-coupon spot curve tenors

For each ISIN in the portfolio subject to margining it is then possible to obtain, by adding up all the market values mapped on a specific ZC curve tenor, a structure like that represented below:

Table 15: Cash-flow mapping per ISIN

Portfolio	ISIN	Position	Tenor	Mapped cash flow (market value)
X	IT000XXXXXX1	L	Tenor_1	Sum_mapped_cashflows_bond_1
X	IT000XXXXXX1	L	Tenor_2	Sum_mapped_cashflows_bond_1
\ldots	\ldots	\ldots	\ldots	\ldots
Portfolio	ISIN	Position	Tenor	Mapped cash flow (market value)
X	IT000XXXXXX2	S	Tenor_1	Sum_mapped_cashflows_bond_2
X	IT000XXXXXX2	S	Tenor_2	Sum_mapped_cashflows_bond_2
\ldots	\ldots	\ldots	\ldots	\ldots

For each sovereign among those subject to cash-flow mapping (i.e. Italy - nominal/real subsets, Spain - nominal/real subsets, Portugal and Ireland) it is possible to compute the sum of the market values mapped on each tenor of the relative ZC curve (with netting of potential long and short values mapped on the same tenor), by adding up all the market values of the ISINs constituting the specific sovereign sub-portfolio:

Table 16: Cash-flow mapping per ZC curve

Portfolio	Issuer	Tenor	Total mapped cash flows (market value)
X	Y	Tenor_1	Sum_mapped_cashflows_issuer_Y
X	Y	Tenor_2	Sum_mapped_cashflows_issuer_Y
\ldots	\ldots	\ldots	\ldots

3 Price scenarios

3.1 Scaling of the sovereign zero-coupon spot curve time series

The $Z C$ curves to which the scaling process is applied are all those employed to map the (market value of the) cash flows of the margined portfolio, i.e. relating to the issuers of the bonds in it. These are:

- Italian nominal;
- Italian real;
- Spanish nominal;
- Spanish real;
- Irish nominal;
- Portuguese nominal.

All these curves will be taken starting from mid-2004 for complete availability reasons.
The time series of each tenor of each reference $Z C$ curve will have length equal to the lookback period (model parameter) plus:

- the scaling window (model parameter) employed in the calculation of the EWMA volatilities;
- the bolding period (model parameter) employed in the calculation of the relative price returns.

In case of 'all available data' lookback period this will obviously be equal to all available data scaling window - holding period.

If we call n the lookback, period and t the scaling window, the panel data of a given ZC curve (assuming that the longest tenor has a duration of 30 years) can be generalized as follows:

Table 17: ZC curve panel data

n	3M	6M	1Y	...	30Y
1	x_1 \%	y_1 \%	v_1 \%	..	w_1 \%
...	\ldots	\ldots	\ldots	...	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$\mathrm{n}+\mathrm{t}+\mathrm{hp}-1$	x_n+t+hp-1 \%	y_n+t+hp-1 \%	v_n+t+hp-1 \%	...	w_n+t+hp-1 \%
$\mathrm{n}+\mathrm{t}+\mathrm{hp}$	x_n+t+hp \%	y_n+t+hp \%	v_n+t+hp \%	\ldots	w_n+t+hp \%

3.1.1 Conversion of the times series from rates to prices

The above rate time series must be converted into price time series employing the following formulas:
$Z C$ curve tenors with duration <1 year:
(1) price $=\frac{100}{(1+\text { rate })^{\mathrm{d}}}$;
$Z C$ curve tenors with duration $>=1$ year:
(2) price $=100 * e^{- \text {rate }{ }^{*} d}$,
with rate: rate $\% / 100$ and d : duration (in years) of the tenor of the ZC curve whose rate time series is being converted into price time series.

Table 18: Rates into prices conversion

n	3M	6M	1Y	\ldots	30Y
1	$\begin{gathered} 100 / \\ \left(1+\mathrm{x} _1\right) \wedge 0,25 \end{gathered}$	$\begin{gathered} 100 / \\ \left(1+\mathrm{y} _1\right)^{\wedge}{ }^{0,5} 5 \end{gathered}$	$\begin{gathered} 100^{*} \\ \exp \left(-1 *{ }_{\mathrm{v}}\right. \text { _1) } \end{gathered}$	\ldots	$\begin{gathered} 100 * \\ \exp \left(-30 * w_{-} 1\right) \end{gathered}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$\mathrm{n}+\mathrm{t}+\mathrm{hp}-1$	$\begin{gathered} 100 / \\ \left(1+\mathrm{x} _\mathrm{n}+\mathrm{t}+\mathrm{hp}-\right. \\ 1)^{\wedge} 0,25 \end{gathered}$	$\begin{gathered} 100 / \\ (1+ \\ y_{-n+t+h p-1)^{\wedge}}{ }^{\wedge} \\ 0,5 \end{gathered}$	$\begin{gathered} 100 * \\ \exp (-1 * \\ \left.\mathrm{v} _\mathrm{n}+\mathrm{t}+\mathrm{hp}-1\right) \end{gathered}$	\ldots	$\begin{gathered} 100 * \\ \exp (-30 * \\ \left.\mathrm{w} _\mathrm{n}+\mathrm{t}+\mathrm{hp}-1\right) \end{gathered}$
$n+t+h p$	$\begin{gathered} 100 / \\ \left(1+\mathrm{x} \mathrm{_n}+\mathrm{t}+\mathrm{hp}\right) \\ \wedge 0,25 \end{gathered}$	$\begin{gathered} 100 / \\ (1+ \\ {\left.\mathrm{y} _\mathrm{n}+\mathrm{t}+\mathrm{hp}\right)^{\wedge}}^{0,5} \end{gathered}$	$\begin{gathered} 100 * \\ \exp (-1 * \\ \left.\mathrm{v} _\mathrm{n}+\mathrm{t}+\mathrm{hp}\right) \end{gathered}$	\ldots	$\begin{gathered} 100 * \\ \exp (-30 * \\ \left.\mathrm{w} _\mathrm{n}+\mathrm{t}+\mathrm{hp}\right) \end{gathered}$

3.1.2 Computation of the (unscaled) relative price returns

Once the price time series of each tenor of each ZC curve has been computed, it is necessary to compute the (unscaled) relative price return time series as follows:
(3) price_return $_{t}=\frac{\text { price }_{t}}{\text { price }_{t-h p}}-1$.

The time series computed this way has length equal to $n+t$.
For example, consider the following rate time series:

Date	1Y rate
$14 / 03 / 2017$	$-0,149 \%$
$15 / 03 / 2017$	$-0,167 \%$
$16 / 03 / 2017$	$-0,184 \%$
$17 / 03 / 2017$	$-0,174 \%$
$20 / 03 / 2017$	$-0,172 \%$
$21 / 03 / 2017$	$-0,178 \%$
$22 / 03 / 2017$	$-0,176 \%$
$23 / 03 / 2017$	$-0,175 \%$
$24 / 03 / 2017$	$-0,180 \%$
$27 / 03 / 2017$	$-0,178 \%$
$28 / 03 / 2017$	$-0,175 \%$

$29 / 03 / 2017$	$-0,183 \%$
$30 / 03 / 2017$	$-0,176 \%$
$31 / 03 / 2017$	$-0,180 \%$
$03 / 04 / 2017$	$-0,189 \%$

The above rate time series is converted into a price time series employing formula (2):

Date	1Y rate	1Y price
$14 / 03 / 2017$	$-0,149 \%$	100,150
$15 / 03 / 2017$	$-0,167 \%$	100,167
$16 / 03 / 2017$	$-0,184 \%$	100,184
$17 / 03 / 2017$	$-0,174 \%$	100,174
$20 / 03 / 2017$	$-0,172 \%$	100,172
$21 / 03 / 2017$	$-0,178 \%$	100,178
$22 / 03 / 2017$	$-0,176 \%$	100,176
$23 / 03 / 2017$	$-0,175 \%$	100,175
$24 / 03 / 2017$	$-0,180 \%$	100,181
$27 / 03 / 2017$	$-0,178 \%$	100,178
$28 / 03 / 2017$	$-0,175 \%$	100,175
$29 / 03 / 2017$	$-0,183 \%$	100,183
$30 / 03 / 2017$	$-0,176 \%$	100,176
$31 / 03 / 2017$	$-0,180 \%$	100,181
$03 / 04 / 2017$	$-0,189 \%$	100,189

Assuming a 5 day-bolding period the relative price return time series can be represented as follows:

Date	1Y rate	1Y price	1Y relative price return
$14 / 03 / 2017$	$-0,149 \%$	100,150	
$15 / 03 / 2017$	$-0,167 \%$	100,167	
$16 / 03 / 2017$	$-0,184 \%$	100,184	
$17 / 03 / 2017$	$-0,174 \%$	100,174	
$20 / 03 / 2017$	$-0,172 \%$	100,172	
$21 / 03 / 2017$	$-0,178 \%$	100,178	$0,029 \%$
$22 / 03 / 2017$	$-0,176 \%$	100,176	$0,009 \%$
$23 / 03 / 2017$	$-0,175 \%$	100,175	$-0,009 \%$
$24 / 03 / 2017$	$-0,180 \%$	100,181	$0,007 \%$
$27 / 03 / 2017$	$-0,178 \%$	100,178	$0,006 \%$
$28 / 03 / 2017$	$-0,175 \%$	100,175	$-0,004 \%$
$29 / 03 / 2017$	$-0,183 \%$	100,183	$0,007 \%$
$30 / 03 / 2017$	$-0,176 \%$	100,176	$0,001 \%$
$31 / 03 / 2017$	$-0,180 \%$	100,181	$0,000 \%$
$03 / 04 / 2017$	$-0,189 \%$	100,189	$0,011 \%$

3.1.3 Computation of the EWMA volatility

Given the relative price return time series computed as described above, it is then necessary to compute for each observation of the lookback period the corresponding value of the volatility according to the EWMA methodology.

In particular, a seed volatility is computed on the first scaling window t observations of the time series according to formula (10) of above

CC\&G
A EURONEXT COMPANY
Cash-flow mapping section.
For the following lookback period n observations of the time series the volatility of each observation is recursively computed according to the formula:
(4) $\sigma_{i}=\sqrt{\lambda \sigma_{i-1}^{2}+(1-\lambda) r_{i}^{2}}$

$$
\begin{aligned}
& \sigma_{1}=\sqrt{\lambda \sigma_{0}^{2}+(1-\lambda) r_{1}^{2}} \\
& \sigma_{2}=\sqrt{\lambda \sigma_{1}^{2}+(1-\lambda) r_{2}^{2}}=\sqrt{\lambda\left(\lambda \sigma_{0}^{2}+(1-\lambda) r_{1}^{2}\right)+(1-\lambda) r_{2}^{2}},
\end{aligned}
$$

with λ : smoothing factor (comprised between 0 and 1); r. relative price return computed according to formula (3). Formula (4), which is a variant of the formula $\sigma_{i}=\sqrt{\lambda \sigma_{i-1}^{2}+(1-\lambda) r_{i-1}^{2}}$, allows, as outlined at the beginning of the document, to weigh the observations based on the current volatility cluster.

For example, consider a 11 day-scaling window, a 8 day-lookback period (evaluation date: $15 / 04 / 2017$, assuming last available $Z C$ curve data is $14 / 04 / 2017$) and a smoothing factor $\lambda=$ 0,94 . Furthermore, consider the following relative price return time series:

Date	Relative price return	EWMA volatility	Notes
21/03/2017	0,029\%		
22/03/2017	0,009\%		SCALING WINDOW
23/03/2017	-0,009\%		
24/03/2017	0,007\%		
27/03/2017	0,006\%		
28/03/2017	-0,004\%		
29/03/2017	0,007\%		* standard deviation of
30/03/2017	0,001\%		the observations between
31/03/2017	0,000\%		21/03/2017 and
03/04/2017	0,011\%		$04 / 04 / 2017$
04/04/2017	0,019\%	0,010\%**	
05/04/2017	0,010\%	0,010\%	
06/04/2017	0,024\%	0,011\%	
07/04/2017	0,027\%	0,013\%	LOOKB ACK PERIOD
10/04/2017	0,005\%	0,013\%	
11/04/2017	-0,014\%	0,013\%	
12/04/2017	-0,021\%	0,013\%	Formula (4) is applied
13/04/2017	-0,029\%	0,015\%	
14/04/2017	-0,034\%	0,017\%	

3.1.4 Scaled relative price returns

Given the relative price return time series ${ }^{4}$ and the volatility computed according to the EWMA methodology outlined in the previous paragraph, it is then possible to compute the scaled relative price return time series.

In particular, the scaling factor applied to each observation is computed according to the following formula (mid-volatility approach):
(5) scaling_factor $_{t}=\frac{\sigma_{T}+\sigma_{t}}{2 * \sigma_{t}}$,
with σ_{T} : EWMA volatility computed for the most recent observation of the time series (therefore, evaluation day - 1 day); σ_{t} : $E W M A$ volatility computed for the specific observation which the scaling factor is applied to (full-volatility approach would have been characterized by the formula scaling_factor ${ }_{t}=\frac{\sigma_{T}}{\sigma_{t}}$.

The scaling factor is applied to each observation of the relative price return time series according to the following formula:
(6) scaled_price_return $_{t}=$ unscaled_price_return $_{t} *$ scaling_factor $_{t}$

Consider the previous example time series (evaluation date: $15 / 04 / 2017$): σ_{T} is equal to $0,017 \%$ and the scaled relative price return time series is as follows:

Date	Unscaled relative price return	EWMA volatility	Scaled relative price return
$05 / 04 / 2017$	$0,010 \%$	$0,010 \%$	$0,014 \%$
$06 / 04 / 2017$	$0,024 \%$	$0,011 \%$	$0,031 \%$
$07 / 04 / 2017$	$0,027 \%$	$0,013 \%$	$0,031 \%$
$10 / 04 / 2017$	$0,005 \%$	$0,013 \%$	$0,006 \%$
$11 / 04 / 2017$	$-0,014 \%$	$0,013 \%$	$-0,016 \%$
$12 / 04 / 2017$	$-0,021 \%$	$0,013 \%$	$-0,024 \%$
$13 / 04 / 2017$	$-0,029 \%$	$0,015 \%$	$-0,031 \%$
$14 / 04 / 2017$	$-0,034 \%$	$0,017 \%$	$-0,034 \%$

3.2 Price scenarios definition

It is then necessary to define a series of price scenarios with length equal to the lookback, period. Each price scenario is computed on the basis of the chosen bolding period as the ratio between the observation for which the specific price scenario is being calculated and the $h p$ day-earlier observation (e.g. if $h p$ is equal to 5 days each price scenario is computed as the ratio between the current observation and the 5-day earlier observation):

[^2](7) price_scenario $_{t}=\frac{\text { price }_{t}}{\text { price }_{t-h p}}$.

Both scaled and unscaled price scenarios are computed.

3.2.1 Scaled price scenarios

In particular, the scaled price scenarios can be computed employing the scaled relative price return time series. Each relative price return is indeed already computed as relative_price_return $t_{t}=\frac{\text { price }_{t}}{\text { price }_{t-h p}}-1$. One can thus compute the price scenario as:
(8) scaled_price_scenario ${ }_{t}=$ scaled_relative_price_return $_{t}+1$.

It is possible to summarize the process for obtaining the scaled price scenarios the following way:

Table 19: Scaled price scenarios computation

Date	Unscaled relative price return	Scaled relative price return	Scaled price scenario
1	price_1 / price_1-hp - 1	$\begin{gathered} \hline \text { (price_1 / price_1-hp - 1) } \\ \text { * scaling_factor_1 } \end{gathered}$	$\begin{gathered} \text { (price_1 / price_1-hp - 1) } \\ * \text { scaling_factor_1 }+1 \end{gathered}$
...	...	\ldots	...
...	\ldots	\ldots	...
n	price_n / price_n-hp - 1	$\begin{gathered} \text { (price_n / price_n-hp - 1) } \\ \text { * scaling_factor_n } \\ \hline \end{gathered}$	$\begin{gathered} \text { (price_n / price_n-hp - 1) } \\ * \text { scaling_factor_n }+1 \\ \hline \end{gathered}$

The methodology for calculating the scaling factor is described in the previous section.
Always considering the previous example, we therefore have:

Date	Scaled relative price return	Scaled price scenario
$05 / 04 / 2017$	$0,014 \%$	1,00014
$06 / 04 / 2017$	$0,031 \%$	1,00031
$07 / 04 / 2017$	$0,031 \%$	1,00031
$10 / 04 / 2017$	$0,006 \%$	1,00006
$11 / 04 / 2017$	$-0,016 \%$	0,99984
$12 / 04 / 2017$	$-0,024 \%$	0,99976
$13 / 04 / 2017$	$-0,031 \%$	0,99969
$14 / 04 / 2017$	$-0,034 \%$	0,99966

3.2.2 Unscaled price scenarios

The unscaled price scenarios can instead be computed simply skipping, with reference to what outlined in the previous paragraph, the relative price return-scaling factor multiplication step. It is indeed sufficient to compute the price scenarios employing formula (7):

Table 20: Unscaled price scenarios computation

Date	Unscaled price scenario
1	price_1 / price_1-hp
\ldots	\ldots
\ldots	\ldots
n	price_n / price_n-hp

CC\&G
A EURONEXT COMPANY

4 Expected Shortfall

The Expected Shortfall (ES) is a risk measure consisting in the average of the tail events of a given distribution. It is preferred to the Value at Risk (VaR) risk measure, which basically consists of the quantile of that distribution above which the tail actually 'starts', as it is coherent and more conservative. It is also called Conditional-VaR (C-VaR).

The risk measure can either be undiversified or diversified, depending on whether it is computed 'per block' (i.e. without inter-country diversification benefits) or 'as a unique block' (i.e. allowing those benefits). Practically speaking, in one case (the undiversified case) the country portfolios are revalued separately from one another in their set of historical scenarios and the respective risk measures are computed; in the other case (the diversified case) the portfolio is revalued as a whole and a unique risk measure is computed (therefore there will be a unique set of historical scenarios).

Whatever the particular choice is, the current market value of a portfolio is revalued in a set of historical scenarios. These revaluations are then compared to the former and a set of profits/losses is obtained. This P\&L distribution will be characterized by some extreme profits in one tail and some extreme losses in the other tail.

4.1 Undiversified Expected Shortfall calculation

4.1.1 Undiversified Expected Shortfall (per country)

In order to compute the undiversified Expected Shorfall consider a simple hypothetical portfolio consisting of bonds issued by a single country, whose cash flows (at market value) are mapped on the first 3 tenors only of the reference $Z C$ curve. The cash-flow mapping structure can be represented as follows:

Table 21: Margined portfolio cash-flow mapping

Tenor	Cash flows mapped
3 M	Cashflow_3M
6 M	Cashflow_6M
1 Y	Cashflow_1Y

Consider also the following n (chosen lookback period) scaled / unscaled price scenarios defined according to the methodology outlined in the previous section:

Table 22: Price scenarios

Date	3M	$\mathbf{6 M}$	1Y
1	Pricescenario_1_3M	Pricescenario_1_6M	Pricescenario_1_1Y
2	Pricescenario_2_3M	Pricescenario_2_6M	Pricescenario_2_1Y
\ldots	\ldots	\ldots	\ldots
$\mathrm{n}-1$	Pricescenario_n-1_3M	Pricescenario_n-1_6M	Pricescenario_n-1_1Y

n	Pricescenario_n_3M	Pricescenario_n_6M	Pricescenario_n_1Y

The market value of the cash flows mapped on each relevant tenor of the $Z C$ curve must be revalued in each price scenario:

Table 23: Cash flows revaluation per tenor

Date	3M	6M	1Y
1	Pricescenario_1_3M * Cashflow_3M	Pricescenario_1_6M * Cashflow_6M	$\begin{gathered} \text { Pricescenario_1_1Y * } \\ \text { Cashflow_1Y } \end{gathered}$
2	Pricescenario_2_3M * Cashflow_3M	Pricescenario_2_6M * Cashflow_6M	Pricescenario_2_1Y * Cashflow_1Y
\ldots	\ldots	\ldots	\ldots
$\mathrm{n}-1$	Pricescenario_n-1_3M * Cashflow_3M	Pricescenario_n-1_6M * Cashflow_6M	Pricescenario_n-1_1Y * Cashflow_1Y
n	$\begin{gathered} \hline \text { Pricescenario_n_3M * } \\ \text { Cashflow_3M } \\ \hline \end{gathered}$	Pricescenario_n_6M * Cashflow_6M	Pricescenario_n_1Y * Cashflow_1Y

Once the revalued (per tenor and price scenario) market value of each cash flow has been computed, it is possible to compute the revalued market value of the entire portfolio subject to margining in each price scenario:

Table 24: Portfolio revaluation

Date	Revalued portfolio
1	Pricescenario_1_3M * Cashflow_3M + Pricescenario_1_6M * Cashflow_6M + Pricescenario_1_1Y * Cashflow_1Y
2	Pricescenario_2_3M * Cashflow_3M + Pricescenario_2_6M * Cashflow_6M + Pricescenario_2_1Y * Cashflow_1Y
\ldots	\ldots
n-1	Pricescenario_n-1_3M * Cashflow_3M + Pricescenario_n-1_6M * Cashflow_6M + Pricescenario_n-1_1Y * Cashflow_1Y
n	Pricescenario_n_3M * Cashflow_3M + Pricescenario_n_6M * Cashflow_6M + Pricescenario_n_1Y * Cashflow_1Y

Having the revalued market value of the portfolio subject to margining in each price scenario and its current market value it is possible to compute its profit/loss in each price scenario:

Table 25: Portfolio profit/loss per price scenario

Date	Revalued portfolio	Current portfolio	Profit/Loss
1	Pricescenario_1_3M * Cashflow_3M + Pricescenario_1_6M * Cashflow_6M + Pricescenario_1_1Y * Cashflow_1Y = Revalued market value 1	Current market value	Revalued market value 1 Current market value
2	Pricescenario_2_3M * Cashflow_3M + Pricescenario_2_6M * Cashflow_6M + Pricescenario_2_1Y* Cashflow_1Y = Revalued market value 2	Current market value	Revalued market value 2 Current market value
\ldots	\ldots	\ldots	..
n-1	Pricescenario_n-1_3M * Cashflow_3M + Pricescenario_n-1_6M * Cashflow_6M + Pricescenario_n-1_1Y* Cashflow_1Y = Revalued market value $n-1$	Current market value	Revalued market value n-1 Current market value
n	Pricescenario_n_3M * Cashflow_3M + Pricescenario_n_6M * Cashflow_6M + Pricescenario_n_1Y * Cashflow_1Y = Revalued market value n	Current market value	Revalued market value n Current market value

Having the portfolio profit/loss in each price scenario it is possible to compute the portfolio undiversified Expected Shorffall according to two different approaches:

- Single tail approach (worst losses):

The single tail approach implies that only losses are considered. These losses are sorted from the worst to the less serious and, given the chosen confidence level, the portfolio undiversified Expected Shorffall is computed as average of the tail observations.

For example, consider a 5 day-lookback period, a 80% confidence level and the following set of portfolio profits/losses (net long position):

Date	Revalued portfolio	Current portfolio	Profit/Loss
1	10	10	0
2	8	10	-2
3	12	10	2
4	7	10	-3
5	7,5	10	$-2,5$

We sort the profits/losses from the worst loss to best profit and obtain:

Date	Revalued portfolio	Current portfolio	Gain/Loss
4	7	10	-3
5	7,5	10	$-2,5$
2	8	10	-2
1	10	10	0
3	12	10	2

It is then necessary to compute the number of observations in the tail of the $\mathrm{P} \& \mathrm{~L}$ distribution given the chosen lookback period and confidence level, as number of observations ${ }^{5}$ (1confidence level), rounding the result to the nearest integer. In the example the number of tail observations is then equal to 1 . The undiversified Expected Shorfall of the portfolio is equal to the average of the tail observations (in absolute terms). In the example it amounts to 3 .

- Double tail approach (worst absolute variations):

The double tail approach implies that all variations are considered, in absolute terms. These absolute variations are sorted from the greatest to the smallest and, given the chosen confidence level, the portfolio undiversified Expected Shorfall is computed as average of tail observations.

For example, consider a 5 day-lookback period, a 80% confidence level and the following set of portfolio absolute variations:

Date	Revalued portfolio	Current portfolio	Profit/Loss absolute value
1	10	10	0
2	8	10	2
3	12	10	2
4	7	10	3
5	7,5	10	2,5

We sort the absolute variations from the greatest to the smallest and obtain:

Date	Revalued portfolio	Current portfolio	Profit/Loss absolute value
4	7	10	3
5	7,5	10	2,5
2	8	10	2
3	12	10	2
1	10	10	0

It is then necessary to calculate the number of tail observations given the chosen lookback period and confidence level, as number of observations ${ }^{6}$ (1 - confidence level), rounding the result to the nearest integer. In the example the number of tail observations is then equal to 1 . The

[^3]undiversified Expected Shorffall of the portfolio is equal to the average of the selected observations, in the example equal to 3 .

In case the portfolio contains bonds issued by different sovereigns, the methodology described above must be replicated for each sub-portfolio (consisting of all and only the ISINs issued by a specific country and therefore mapped on a specific ZC curve). The portfolio undiversified Expected Shorfall is then equal to the sum of the undiversified Expected Shorffalls of each sub-portfolio.

It is worthwhile mentioning that for countries such as Italy and Spain having both nominal and real $Z C$ curves the adopted country-approach would be the diversified one. Therefore, Italian nominal and real sub-portfolios would lead to a unique diversified country Expected Shortfall; the same can be said about Spain; finally, all country Expected Shorfalls would be summed up in an undiversified way.

4.1.2 Undiversified Expected Shortfall per sovereign zero-coupon bond tenor

Looking at the undiversified Expected Shortfall from a different and narrower (than per country) point of view, it is possible to compute the undiversified Expected Shorfall per ZC curve tenor.

Going back to Table 23, instead of proceeding as described further, the revalued market value per tenor-price scenario combination is directly compared to the market value of the subportfolio mapped on that specific tenor. This means that an undiversified Expected Shortfall for each tenor of the ZC curves involved in the cash-flow mapping can be computed.

For example, consider the 3 month tenor in Table 23:

Date	3M
1	Pricescenario_1_3M * Cashflow_3M
2	Pricescenario_2_3M * Cashflow_3M
\ldots	\ldots

The P\&L distribution for that tenor can be computed as follows:

Date	Revalued tenor	Current tenor	Profit/Loss
1	Pricescenario_1_3M * Cashflow_3M = Revalued market value 1	Cashflow_3M	Revalued market value 1 - Cashflow_3M
2	Pricescenario_2_3M * Cashflow_3M $=$ Revalued market value 2	Cashflow_3M	Revalued market value 2 - Cashflow_3M
\ldots	\ldots	\ldots	\ldots
$\mathrm{n}-1$	Pricescenario_n-1_3M * Cashflow_3M $=$	Cashflow_3M	Revalued market value $n-1$ - Cashflow_3M

	Revalued market value $n-1$		
n	Pricescenario_n_3M * Cashflow_3M $=$ Revalued market value n	Cashflow_3M	Revalued market value $n-$ Cashflow_3M

The calculation of the undiversified Expected Shorfall per single tenor follows the same logic (including the single tail / double tail approach distinction) as that described in the previous paragraph.

4.1.3 Diversified Expected Shortfall calculation per country

As opposed to the undiversified Expected Shortfall calculation outlined above, the calculation of the diversified Expected Shorfall is characterized by the acknowledgement of the investment diversification benefit to the Clearing Member (of course only in case its portfolio contains bonds issued by more than one country).

For example, consider the following cash flow structure:
Table 26: Margining portfolio cash-flow mapping (2)

Tenor	Cash flows mapped
3M_ITA	Cashflow_3M_ITA
6M_SPA	Cashflow_6M_SPA

Consider also the following n (equal to the chosen lookback period) scaled / unscaled price scenarios defined according to the methodology outlined in previous section:

Table 27: Price scenarios (2)

Date	3M_ITA	6M_SPA
1	Pricescenario_1_3M_ITA	Pricescenario_1_6M_SPA
2	Pricescenario_2_3M_ITA	Pricescenario_2_6M_SPA
\ldots	\ldots	\ldots
$\mathrm{n}-1$	Pricescenario_n-1_3M_ITA	Pricescenario_n-1_6M_SPA
n	Pricescenario_n_3M_ITA	Pricescenario_n_6M_SPA

The cash flows mapped on each relevant tenor of each reference ZC curve are revalued in each price scenario:

Table 28: Cash flows revaluation per tenor (2)

Date	Revalued ITA sub- portfolio	Revalued SPA sub- portfolio
1	Pricescenario_1_3M_ITA * Cashflow_3M_ITA	Pricescenario_1_6M_SPA * Cashflow_6M_SPA
2	Pricescenario_2_3M_ITA * Cashflow_3M_ITA	Pricescenario_2_6M_SPA * Cashflow_6M_SPA
\ldots	\ldots	\ldots
$\mathrm{n}-1$	Pricescenario_n-1_3M_ITA * Cashflow_3M_ITA	Pricescenario_n-1_6M_SPA * Cashflow_6M_SPA
n	Pricescenario_n_3M_ITA *	Pricescenario_n_6M_SPA *

	Cashflow_3M_ITA	Cashflow_6M_SPA

Since in this example each sub-portfolio consists of cash flows mapped on a single tenor of a ZC curve, Table 28 already represents the revalued country sub-portfolio. If there were cash flows mapped on more than one tenor per $Z C$ curve, for each sub-portfolio it would have been necessary to make a calculation similar to that shown in Table 24.

The revalued market value of the entire portfolio in each price scenario is computed the following way:

Table 29: Cash flows revaluation per tenor

Date	Revalued ITA subportfolio	Revalued SPA subportfolio	Revalued portfolio
1	Pricescenario_1_3M_ITA * Cashflow_3M_ITA	Pricescenario_1_6M_SPA * Cashflow_6M_SPA	Pricescenario_1_3M_ITA * Cashflow_3M_ITA + Pricescenario_1_6M_SPA * Cashflow_6M_SPA
2	Pricescenario_2_3M_ITA * Cashflow_3M_ITA	Pricescenario_2_6M_SPA * Cashflow_6M_SPA	Pricescenario_2_3M_ITA * Cashflow_3M_ITA + Pricescenario_2_6M_SPA * Cashflow_6M_SPA
\ldots	\ldots	\ldots	
$\mathrm{n}-1$	Pricescenario_n-1_3M_ITA * Cashflow_3M_ITA	Pricescenario_n-1_6M_SPA * Cashflow_6M_SPA	```Pricescenario_n-1_3M_ITA * Cashflow_3M_ITA + Pricescenario_n-1_6M_SPA * Cashflow_6M_SPA```
n	Pricescenario_n_3M_ITA * Cashflow_3M_ITA	Pricescenario_n_6M_SPA * Cashflow_6M_SPA	Pricescenario_n_3M_ITA * Cashflow_3M_ITA + Pricescenario_n_6M_SPA * Cashflow_6M_SPA

The way to compute the diversified Expected Shortfall of the portfolio is the same as that described above (the distinction between single tail and double tail approaches still applying).

4.1.4 Use of Spectral Risk Measures (SRMs)

We anticipated the Expected Shortfall is the average of a set of tail events. The 'plain' Expected Shorffall is indeed a simple average, i.e. each of the n tail events has a weight of $1 / n$. However, it is also possible using non-uniform weighting schemes.

In particular, long lookback periods may imply very diluted tails. When the all available data lookback period is chosen, given a fixed confidence level, the number of observations in the tails is destined to increase every passing day. Since the Expected Shortfall represents the average of these observations, a tail which keeps diluting implies an Expected Shorffall risk measure less and less conservative. A trade-off therefore exists between longer lookback periods (allowing to always take into account past significant stress events) and conservativeness of risk measures.

Spectral risk measures allow to differently weight the observations in the tails by assigning more importance to the most extreme ones.

In particular, moving along the P\&L distribution (e.g. moving from the smallest profit/loss in the tail to the biggest one) spectral risk measures allow to address the increasing risk-aversion of the CCP by assigning higher and higher weights.

In order to choose the $S R M$ function two principles are taken into consideration:

1) the Risk Appetite Framework of the CCP must be satisfied, meaning that the results of the back-tests (both at ISIN and at Clearing Member portfolio level) must preserve the desired coverage level;
2) the anti-procyclicality policy of the ССР must be respected, meaning that possible increases in computed margin requirements must be checked against any anti procyclicality thresholds.

Considered the two conditions above, a spectral risk measure that is both conservative (as per point 1 above) and not too punitive during crises (as per point 2) is chosen.

The chosen spectral risk measure works as follows:
denoting by $i=1, \ldots, n$ the tail events (where 1 corresponds to the smallest profit/loss and n to the biggest one), weights w_{i} are given by:
(1) $\mathrm{w}_{1}=\mathrm{x}$;
$\mathrm{X}^{-1}=\frac{\left.\text { srm_factor }{ }^{(\text {tail_lenght }+1)}-\text { srm_factor*(tail_lenght }+1\right)+ \text { tail_lenght }}{(1-\text { srm_factor })^{2}}$
$\mathrm{w}_{2}=\mathrm{w}_{1}+$ srm_factor $* \mathrm{w}_{1}$;
$\mathrm{w}_{3}=\mathrm{w}_{2}+$ srm_factor $*\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)$;
...;
$\mathrm{w}_{\mathrm{n}}=\mathrm{w}_{\mathrm{n}-1}+$ srm_factor $*\left(\mathrm{w}_{\mathrm{n}-1}-\mathrm{w}_{\mathrm{n}-2}\right)$.
The weights must obviously sum to 1. :
Once the value of x is retrieved, all weights can be recursively retrieved. The weights are then applied to the observations in the tail in order to retrieve the SRM Expected Shorffall.

Consider as an example a 11 extreme events tail, obtained combining the confidence level to the lookback period, and a SRM factor equal to 1,35.

Table 30: Profits/losses tail observations

\mathbf{n}	Profit/Loss
1	100
2	96
3	93

4	90
5	88
6	85
7	82
8	78
9	75
10	70
11	67

The 'plain' Expected Shortfall of such distribution amounts to 84 (average of the 10 observations).

The SRM Expected Shorffall would instead be defined through the following steps:
a) definition of the first weight $w_{1}=x$;
b) recursive definition of all the other weights w_{2}, \ldots, w_{11} :

\mathbf{n}	Profit/Loss	Weight
1	100	0.29100
2	96	0.21267
3	93	0.15465
4	90	0.11167
5	88	0.07983
6	85	0.05625
7	82	0.03878
8	78	0.02584
9	75	0.01626
10	70	0.00916
11	67	0.00390

c) computation of the weighted profits/losses by multiplying each observation by its weight:

\mathbf{n}	Profit/Loss	Weight	Weighted Profit/Loss
1	100	0.29100	29.10
2	96	0.21267	20.42
3	93	0.15465	14.38
4	90	0.11167	10.05
5	88	0.07983	7.03
6	85	0.05625	4.78
7	82	0.03878	3.18
8	78	0.02584	2.02
9	75	0.01626	1.22
10	70	0.00916	0.64
11	67	0.00390	0.26

d) computation of the SRM Expected Shorfall summing all weighted profits/losses (amounting to 93.07).

The SRM Expected Shorffall yields a more conservative result with respect to the 'plain' Expected Shorffall, as expected.

[^0]: ${ }^{1}$ The 15/06/2018 coupon is already defined and known.

[^1]: ${ }^{2}$ Issue date

[^2]: ${ }^{4}$ The part of the time series of interest is that post-scaling window. Its length is therefore equal to n (chosen lookback period).

[^3]: ${ }^{5}$ Equal to the lookback period.
 ${ }^{6}$ Equal to the lookback period.

