

Background

- As part of the focus on CCPs in the wake of the Lehman's Default, European and Worldwide Financial Authorities have requested CCPs to include a <u>Model Validation</u> <u>Framework</u> in their Risk Management processes
- Model Validation is a key <u>Model Risk</u> mitigant, i.e. the risk that a model:
 - o is not providing accurate output
 - is being used inappropriately
- In order to meet these regulatory requirements, CC&G has set up the <u>Risk Policy Dept.</u>
 that is also in charge of Validation of Risk Models

Model Validation Features

Risk Policy performs an independent review of all the components of Risk Models, using an internally developed <u>web based tool (MoVE)</u> that allows <u>both to replicate the existing margining methodologies</u> on the main asset classes <u>and to run a wide set of Benchmark Models</u>

CC&G Internal Model Validation:

- o is based on a configurable <u>web-based graphical interface</u> (as opposed to Excel-based validations), released in 2016
- allows a <u>full recalculation</u> of risk algorithms (as opposed to qualitative validations)
- o creates a **parallel environment** for risk calculations

Benchmark Models:

- evaluate models performance by using market best practices, thus allowing a <u>comparison with</u>
 <u>CC&G's peers</u>
- may represent a <u>strategic decision facilitator</u> since they provide indication on the efficiency of various margin algorithms
- have been validated by Global Valuation Ltd, led by an eminent Professor at King's College, so that their <u>consistency and adequacy</u> are ensured

Model Validation Process

Model Benchmarking

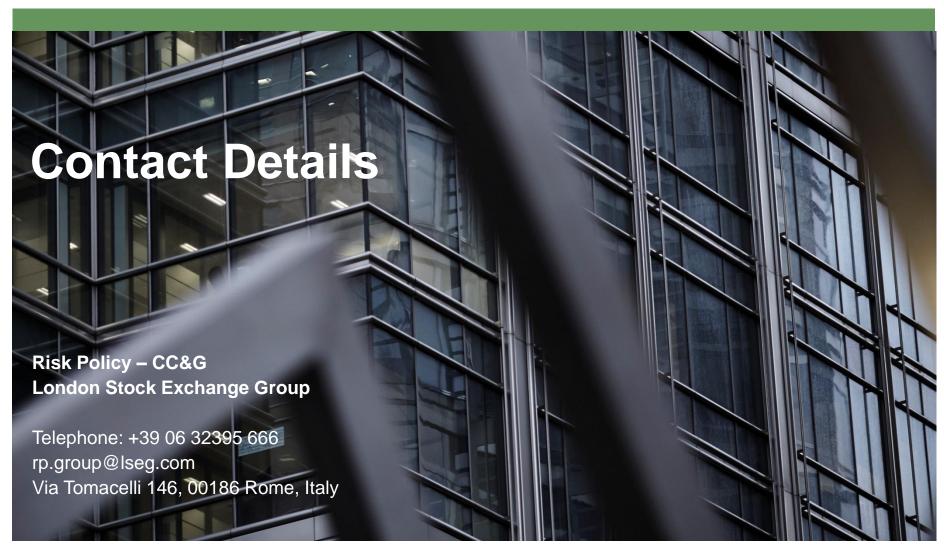
- Four "Value at Risk" (VaR) Benchmark Models have been selected, classified into two groups:
 - Local-valuation methods (Var Cov): value the portfolio once, at the initial position, and use local derivatives to infer possible movements
 - <u>Full-valuation methods</u>: fully re-price portfolio over a wide range of scenarios. <u>Historical VaR</u>, <u>Expected Shortfall, Monte Carlo Simulated VaR</u> belong to this family

IMV Environment Model Replica Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 Variance-Covariance VaR Expected Shortfall Historical VaR Montecarlo simulated VaR MVP Methodology INPUT (a) INPUT (b) INPUT (c) INPUT (d) INPUT (e) CALCULATION (a) CALCULATION (b) CALCULATION (c) CALCULATION (d) CALCULATION (e) OUTPUT (a) OUTPUT (b) OUTPUT (c) OUTPUT (d) OUTPUT (e)

Benchmark Models

Name	Variance-Covariance	Historical	Expected Shortfall	Monte Carlo
Description	For each portfolio, determines the amount of potential loss (VaR) that can occur with probability 1-CL over HP days	For each portfolio, determines the amount of potential loss (VaR) that can occur with probability 1-CL over HP days, by ranking historical returns from lowest to highest	Given a quantile-level q, calculates the expected loss of the portfolio given that a loss is occurring at or below the q-quantile	Estimates VaR by simulating random scenarios, revaluing instruments in the portfolio and selecting the CL-percentile of simulated values
What's inside	Cash-flow mapping: Map every instrument (principal and coupon amounts) of the portfolio in the appropriate nodes based on Duration VaR calculation: Given the present value of x of the future cash payments and the portfolio variance-covariance matrix Σ , $VaR = \alpha \sqrt{x'} \Sigma x$, where α is the normal distribution quantile	All yield input data are converted into prices p For each node j=1,,n and t=1,,m day of the time series, given the current price p_{curr} , the following price variations are computed $p_{curr}^{j} \frac{p_{t}^{j}}{p_{t-hp}^{j}}$ •The portfolio is fully reevaluated by multiplying the notional amount allocated to each node by the related price scenario and then selecting the CL-percentile	Same assumptions as Historical VaR Given the loss function X, ES is given by: $E(X \mid X < q) = \frac{\int_{-\infty}^q x f(x) dx}{\int_{-\infty}^q f(x) dx}$	 Select a stochastic process for yields: y_t = f(t) + ε_t Compute yields at T+1 for N_{sim} times (Nelson Siegel Model) VaR is the CL-percentile of the N_{sim} portfolio value variations
Advantage	Fast and simple to calculate Needs only correlations of risk factors as input	No assumptions on distribution	More conservative than Historical VaR Coherent risk measure	Converges to the solution Future can behave differently from the past
Disadvantage	Normality assumption on portfolio returns	 No distribution to help determine future returns Assumes future will behave like the past 	 No distribution to help determine future returns Assumes future will behave like the past 	High computational effort Needed calibration of parameters

Appendix


Regulatory Framework

- **EMIR**, Article 49 (1) (Review of models, stress testing and back testing):
 - "A CCP shall regularly review the models and parameters adopted to calculate its margin requirements, default fund contributions, collateral requirements and other risk control mechanisms. It shall subject the models to rigorous and frequent stress tests to assess their resilience in extreme but plausible market conditions and shall perform back tests to assess the reliability of the methodology adopted. The CCP shall obtain independent validation, shall inform its competent authority and ESMA of the results of the tests performed and shall obtain their validation before adopting any significant change to the models and parameters."
- <u>ESMA RTS No. 153/2013</u>, Section 1 (Models and Programmes), Article 47 (1) (Model Validation): "A CCP shall conduct a comprehensive validation of its models, their methodologies and the liquidity risk management framework used to quantify, aggregate, and manage its risks. Any material revisions or adjustments to its models, their methodologies and the liquidity risk management framework shall be subject to appropriate governance, including seeking advice from the risk committee, and validated by a qualified and independent party prior to application."
- CPMI-IOSCO Principles for Financial Market Infrastructures (2012), Principle (3.2.16)

"The board should ensure that there is adequate governance surrounding the adoption and use of models, such as for credit, collateral, margining, and liquidity risk-management systems. An FMI should validate, on an ongoing basis, the models and their methodologies used to quantify, aggregate, and manage the FMI's risks. The validation process should be independent of the development, implementation, and operation of the models and their methodologies, and the validation process should be subjected to an independent review of its adequacy and effectiveness. Validation should include (a) an evaluation of the conceptual soundness of (including developmental evidence supporting) the models, (b) an ongoing monitoring process that includes verification of processes and benchmarking, and (c) an analysis of outcomes that includes backtesting."

London Stock Exchange Group

Page 9

Disclaimer

This presentation contains text, data, graphics, photographs, illustrations, artwork, names, logos, trade marks, service marks and information ("Information") connected with CC&G. CC&G attempts to ensure Information is accurate, however Information is provided "AS IS" and on an "AS AVAILABLE" basis and may not be accurate or up to date. Information in this presentation may or may not have been prepared by CC&G but is made available without responsibility on the part of CC&G. The Company does not guarantee the accuracy, timeliness, completeness, performance or fitness for a particular purpose of the presentation or any of the Information. No responsibility is accepted by or on behalf of CC&G for any errors, omissions, or inaccurate Information in this presentation.

No action should be taken or omitted to be taken in reliance upon Information in this presentation. We accept no liability for the results of any action taken on the basis of the Information.

CC&G promotes and offers the post-trading services in an equitable, transparent and non-discriminatory manner and on the basis of criteria and procedure aimed at assuring interoperability, security and equal treatment among market infrastructures, to all subjects who so request and are qualified in accordance with national and community legislation, applicable rules and decisions of the competent Authorities.

© January 2018 - CC&G S.p.A. - London Stock Exchange Group